• 中国长江上游0.05°日光诱导叶绿素荧光(GOSIF)年尺度数据集(2001-2021)

    太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国长江上游年尺度时间分辨率的日光诱导叶绿素荧光数据。

    206 2022-09-24

  • 中国西南地区0.05°日光诱导叶绿素荧光(GOSIF)年尺度数据集(2001-2021)

    太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区年尺度时间分辨率的日光诱导叶绿素荧光数据。

    213 2022-10-12

  • 中国西南25米ALOS PALSAR-2年拼接数据(2016-2021)

    PALSAR拼接数据产品是通过JAXA对PALSAR和PALSAR-2的全球基本观测方案观察到的SAR反向散射图像的长路径组合而成的。以Gamma-0背向散射的形式提供的,其地理坐标为0.8秒(在赤道约为25米)的像素间距。时间间隔为年度,PALSAR-2的拼接数据可用于2015-2021年的时间段,PALSAR的拼接数据可用于2007-2010年。本数据经过数据筛选,数据裁剪等操作,获取了长江中上游地区HH和HV极化的ALOS PALSAR-2的数据。可用于P波段微波应用的研究。

    194 2022-09-30

  • 中国长江上游25米ALOS PALSAR-2年拼接数据(2016-2021)

    PALSAR拼接数据产品是通过JAXA对PALSAR和PALSAR-2的全球基本观测方案观察到的SAR反向散射图像的长路径组合而成的。以Gamma-0背向散射的形式提供的,其地理坐标为0.8秒(在赤道约为25米)的像素间距。时间间隔为年度,PALSAR-2的拼接数据可用于2015-2021年的时间段,PALSAR的拼接数据可用于2007-2010年。本数据经过数据筛选,数据裁剪等操作,获取了长江中上游地区HH和HV极化的ALOS PALSAR-2的数据。可用于P波段微波应用的研究。

    193 2022-09-29

  • 中国1km类DMSP-OLS夜间灯光数据集(1992-2020)

    该数据集主要范围中国大陆地区长时序夜间灯光信息。数据存储格式为GeoTIFF,空间分辨率为1km。处理方法是模拟NPP-VIIRS数据与DMSP-OLS数据之间的关系,将2013-2020年的NPP-VIIRS模拟2013-2020年的DMSP-OLS数据,从而得到1992-2020年类DMSP-OLS数据集。首先利用核密度法将NPP-VIIRS数据的空间分率重采样为1-km,基于对数转换后的重采样NPP-VIIRS数据与DMSP-OLS数据之间的“S”曲线关系,利用Sigmoid函数将对数NPP-VIIRS数据转换为模拟DMSP-OLS数据,将1992-2013年校准的DMSP-OLS数据与2013-2020年的模拟DMSP-OLS数据拼接为1992-2020年的类DMSP-OLS数据

    228 2022-09-30

  • 中国重庆市2022年Sentinel提取山火面积数据集

    该数据集包括北碚、南川、涪陵、璧山、江津、开州、长寿、奉节、酉阳、大足等十多个区县在2022年夏遭遇山火的面积,使用2022年9月初和2022年8月初火灾前后的Sentinel-2卫星数据,通过燃烧指数归一化差值方法计算出整个重庆区域的dnbr变化,设置阈值为0.01提取出火灾燃烧的面积,将栅格结果转换为矢量,得到此次2022年重庆山火16m空间分辨率的山火面积数据集,可以为重庆市森林资源管理和防灾救灾应用提供支撑。

    236 2022-10-13

  • 重庆市旅游资源空间分布数据集(2018)

    该数据集:采集去哪儿网、马蜂窝网、携程网三个网站重庆市旅游资源样本数据。以三家网站共有旅游资源作为数据的处理条件,通过合并、删除重复、清除已关闭的旅游资源等方法最终符合条件的重庆市旅游资源点420个。通过GeoSharp软件坐标转换工具箱将420个旅游资源的坐标批量转换为WGS84坐标。通过重庆市旅游政务网获取2018年重庆市A级旅游景区名单(截止时间2018年12月31日),采集A级旅游景区及其对应的质量等级信息,与所爬取的全部旅游资源名录进行对照、核实,将质量等级数据依次录入属性表。具体方法参考文献“基于POI数据的重庆市旅游资源空间分布及其吸引力错位研究(硕士论文)”。

    251 2022-10-14

  • 重庆市人口密度时空序列数据集-多因素融合模型(2000-2015)

    该数据集首先运用多因素融合模型对2010年重庆市人口进行空间化,通过因子与人口的相关性和实际情况分析,选择地形、交通、夜间灯光和NDVI四种因子作为模拟人口的影响因子,并引入产业点因子。本文借助第六次人口普查乡镇数据对多因素融合模型人口模拟结果进行精度验证,相关系数为0.836,在乡镇尺度上进行误差验证中有接近70%左右的乡镇精度在70%以上,模拟效果已经较好。依此方法得到重庆市2000、2005和2015年的人口进行空间分布模拟结果。本数据集空间分辨率为25m*25m。具体反演方法参考文献“基于GIS和多源数据的山地城市人口空间化模拟(硕士论文)”。

    211 2022-10-14

  • 重庆市生态安全时空序列数据集(2000-2015)

    生态环境是人类赖以生存和栖息的场所,伴随着城市化进程的加快,生态环境每况愈下,因此保护生态环境、维护生态安全是可持续发展过程中的一个关键而迫切的研究课题,研究我国区域的生态安全有着特别重要的意义。重庆市位于长江上游地区,是“一带一路”和长江经济带重要的联结点,是长江上游重要的生态屏障,生态地位高,具有丰厚的林地资源和重要的生态服务功能价值,因此本文基于重庆市重要的生态地位,结合PSR模型构建评价指标体系,以格网为评价单元,利用综合指数法计算研究区生态安全综合指数并对其进行分级评价,结合探索性空间分析工具和地理探测器工具,旨在找出重庆生态安全的动态变化特征、空间关联度特征、空间格局分异特征及其驱动机制,研究目的在于更好地了解重庆市生态安全变化的基本特征和规律,为重庆市生态环境的改善提出针对性意见,进而丰富和推动我国生态安全评价的综合研究。本数据计算重庆2000/2005/2010/2015四个时期生态安全综合指数并对其进行分级评价,其空间分辨率统一采样为1000m*1000m。具体反演方法参考文献“基于GIS格网模型的重庆市生态安全时空格局研究(硕士论文)”。

    600 2022-10-14

  • 重庆市生态系统服务功能时间序列数据集-Invest模型算法(2000-2015)

    近年来,大规模的城镇化开发建设在促进区域社会经济发展的同时,对生态环境带来了巨大的影响。通过可视化手段对城镇化过程中生态经济效益定量评估可为权衡经济收益和生态环境效益损失提供科学参考。本研究以重庆市为研究区,利用土地利用遥感解译数据、土壤数据、高程数据、气象数据、社会经济统计数据,结合InVEST 3.3.1、Arc GIS 10.1、SPSS 19.0等软件在对研究区2000、2005、2010、2015年四期的土地利用景观格局变化、城镇化用地变化情况的基础上,对生物栖息地、土壤保持、水源涵养、固碳、调节气候、净化环境6类生态效益和第一产业、二三产业2类经济效益进行评估,对比分析研究区各个土地利用景观格局、五大功能区、39个区县在2000、2005、2010、2015年四个时期的生态经济效益时空变化情况。本数据集空间分辨率为25m*25m。具体反演方法参考文献“基于GIS与InVEST模型的重庆市城镇化过程中生态经济效益损益研究(硕士论文)”。

    690 2022-10-14