• 金佛山国家站槽上自动气象站观测数据(2021)

    本数据来自2021年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究站槽上退耕农田观测场(E106.4424794°;N29.78747°,海拔591m)的自动气象站观测数据。槽上自动气象站的空气温度、相对湿度传感器分别架设在3m和10m处,朝向正北;气压计安装在10m处;翻斗式雨量计安装在10m处;风速与风向传感器分别架设在2m和10m处;四分量辐射仪安装在5m处,朝向正南;光合有效辐射传感器安装在5m、10m处,朝向正南;土壤温度探头埋设在地下2cm、5cm、10cm、20cm、40cm、60cm、80cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下2cm、5cm、10cm、20cm、40cm、60cm、80cm处,在距离气象塔2m的正南方;土壤热通量板(3块)依次埋设在地下5cm、10 cm、20 cm处,在距离气象塔2m的正南方;土壤平均温度探头(1个),埋在地下5cm处,在距离气象塔2m的正南方。每天观测144组数据(每10min),若出现数据的缺失,则由NAN标示。

    203 2022-09-27

  • 西南地区MERRA-2地表蒸散发数据集(1980-2022)

    MERRA-2是从1980年开始的NASA大气再分析。它取代了最初的MERRA再分析使用升级版的Goddard地球观测系统模型,版本5 (GEOS-5)数据同化系统。MERRA-2包括对全局统计插值(GSI)分析方案。该产品的时间分辨率是一小时,空间分辨率0.5° x 0.625°,数据格式为netCDF。时间跨度1980-01-01 至 2022-09-01。该数据集为合理分配区域水资源提供科学依据。

    256 2022-09-21

  • 长江上游地区MERRA-2地表蒸散发数据集(1980-2022)

    MERRA-2是从1980年开始的NASA大气再分析。它取代了最初的MERRA再分析使用升级版的Goddard地球观测系统模型,版本5 (GEOS-5)数据同化系统。MERRA-2包括对全局统计插值(GSI)分析方案。该产品的时间分辨率是一小时,空间分辨率0.5° x 0.625°,数据格式为netCDF。时间跨度1980-01-01 至 2022-09-01。该数据集为合理分配区域水资源提供科学依据。

    183 2022-09-21

  • 全球1km LandScan 人口数据集 (2000-2021)

    LandScan Global 采用结合了地理空间科学、遥感技术和机器学习算法的创新方法,是可用的代表环境(24 小时平均值)人口的最高分辨率全球人口分布数据。 LandScan Global 算法是 R&D 100 奖得主,它使用空间数据、高分辨率图像开发和多变量 dasymetric 建模方法来分解行政边界内的人口普查计数。由于没有单一的人口分布模型可以解释空间数据可用性、质量、规模和准确性的差异以及文化定居实践的差异,LandScan 人口分布模型是为匹配每个国家的数据条件和地理性质而量身定制的和地区。通过对环境人口进行建模,LandScan Global 在白天和黑夜的整个过程中捕获人们的全部潜在活动空间,而不仅仅是住宅位置。

    227 2022-09-23

  • 全球1km国内生产总值数据集(1992–2019)

    经济活动对人类的生存和发展至关重要。在社会组织和秩序的推动下,人类利用劳动和其他生产资源来交换商品和服务,以创造、转化和实现经济价值。一个国家或地区的经济产出是其在一定时期内创造的经济价值的积累;其中,国内生产总值(GDP)是全球最普遍的指标。该数据集采用自上而下的方法,根据校准后的夜间光照数据,从修订后的实际增长角度来计算1992-2019年间全球1km×1km网格化修订后的真实GDP。网格化数据的范围并未涉及全球所有国家(175个国家或地区的GDP数据)。因此,超出我们研究范围的区域值设置为0。官方GDP数据来自宾夕法尼亚大学世界数据库。此外,将所有图像的投影坐标系设置为Mollweide坐标。

    205 2022-09-29

  • 中国西南地区25KM-ESACCI土壤水分数据

    此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为西南地区。

    218 2022-09-24

  • 中国西南地区土壤水分数据集(2002-2018)

    数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取西南地区土壤水分数据。

    227 2022-09-22

  • 金佛山国家站虎头村自动气象站观测数据(2017)

    本数据来自2017年12月6日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究站虎头村农田观测场(E106.3192621°;N29.76271°,海拔515m)的自动气象站观测数据。虎头村自动气象站的空气温度、相对湿度传感器分别架设在5m和10m处,朝向正北;气压计安装在10m处;翻斗式雨量计安装在10m处;风速与风向传感器分别架设在5m和10m处;四分量辐射仪安装在5 m处,朝向正南;光合有效辐射传感器安装在5m、10m处,朝向正南;土壤温度探头埋设在地下2cm、5cm、10cm、20cm、40cm、60cm、80cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下2cm、5cm、10cm、20cm、40cm、60cm、80cm处,在距离气象塔2m的正南方;土壤热通量板(3块)依次埋设在地下5cm、10 cm、20 cm处,在距离气象塔2m的正南方;土壤平均温度探头(3个),依次埋设在地下5cm、10 cm、20 cm处,在距离气象塔2m的正南方。每天观测144组数据(每10min),若出现数据的缺失,则由NAN标示。

    217 2022-09-27

  • 中国西南地区25KM-SMOS土壤水分数据(2010-2016)

    SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国西南地区,格式为TIFF格式。

    249 2022-09-26

  • 西南地区GLDAS地表蒸散发数据集(2000-2022)

    NASA全球陆地数据同化系统(GLDAS)的目标是通过生成摄取卫星和地基的最佳地表状态和通量场观测数据产品,使用先进的陆地表面建模和数据同化技术。GLDAS驱动多个离线的(不耦合的)对大气)的陆面模型,集成了大量的观测数据,并在全球范围内以高分辨率(2.5°到1公里)执行土地信息系统(LIS)。该产品的时间分辨率是三小时,空间分辨率0.25° x 0.25°,数据格式为tif。时间跨度2000-01-01至2022-07-01。该数据集为合理分配区域水资源提供科学依据。

    241 2022-09-21