Search
  • Home
  • Data
  • 最新动态
  • About
    Register Sign In
Home / Data / Browse by Literature
Highlights Browse by Subjects ALL Data Search on Map Browse by Keywords Browse by Thumbnails
  • Bright, E. A., Rose, A. N., Urban, M. L., & McKee, J. (2018). LandScan 2017 high-resolution global population data set (No. LandScan 2017 High-Resolution Global Population Da; 005854MLTPL00). Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
  • Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4F47M65. Accessed 2022/09/30
  • Du, J. and J. S. Kimball. (2021). Daily Global Land Parameters Derived from AMSR-E and AMSR2, Version 3 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/WPXUQ72A4484. Date Accessed 09-27-2022.
  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, 2004: The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85, 381-394, doi:10.1175/BAMS-85-3-381
  • Du J, Jones L A, Kimball J S. Daily Global Land Parameters Derived from AMSR-E and AMSR2, Version 2[J]. 2017.
  • Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., & Worley, B. A. (2000). LandScan: a global population database for estimating populations at risk. Photogrammetric engineering and remote sensing, 66(7), 849-857.
  • Chen, Y., Feng, X., & Fu, B. (2021). An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018, Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021
  • Doxsey-Whitfield, E., MacManus, K., Adamo, S. B., Pistolesi, L., Squires, J., Borkovska, O., & Baptista, S. R. (2015). Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Papers in Applied Geography, 1(3), 226-234.
  • Brecht M , Miralles D G , Hans L , et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development Discussions, 2016:1-36.
  • Liang Gao, Dongdong Song, Yitao Yang, Changxing Xu, & Xiaobao Yang. (2021). District/County Level Population Census GIS Datasets in China (1953-2010) (Version V1) [Data set]. Science Data Bank. https://doi.org/10.11922/sciencedb.j00001.00273
  • «
  • 1
  • 2
  • 3
  • 4 (current)
  • 5
  • »

Warning

Firefox

Chrome

Please using Chrome or Firefox to get the best view of our website

Warning

Firefox

Chrome

Please using Chrome or Firefox to get the best view of our website
重庆金佛山喀斯特生态系统国家野外科学观测研究站数据中心

地址:重庆市北碚区天生路2号田家炳大楼
电话:023-68254080
邮箱:service@rsdata.swu.edu.cn

合作单位

西南大学 电子信息工程学院 计算机与信息科学学院 重庆市测绘院

友情链接 LINK

帮助信息 Help

数据引用帮助 如何发布数据 如何申请数据 隐私政策 联系我们

关注我们

重庆金佛山喀斯特生态系统国家野外科学观测研究站数据中心 © 2018-2020 陇ICP备05000491号 | All Rights Reserved |京公网安备62010202002946号 数据中心技术支持: 数云软件