本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包括歇马虎头村附近耕地、林地、草地等不同土地利用方式下的土壤有机碳及组分、土壤养分、土壤质地、土壤团聚体等数据信息。土壤样品采用土钻法取得,每种土地利用方式下设置4个重复。采集的土壤样品经过2 mm和0.25μm的筛后进行相关指标的测定。其中土壤有机碳及其组分采用重铬酸钾氧化-硫酸亚铁滴定法测定;土壤质地采用激光粒度仪测定;土壤团聚体采用湿筛法获得大团聚体,小团聚体和粉粘粒团聚体三个组分;土壤全氮采用凯式定氮法测定,土壤全磷采用高氯酸-硫酸法测定。
禹朴家
本数据集包含2017年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间比龙洞塘地下河的数据早(2017年5月-2017年12月),则龙洞塘地下河在2017年没有观测数据。野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为西南地区。
Wouter Dorigo
PERSIANN-CDR(利用人工神经网络从遥感信息中估算降水--气候数据记录)由加州大学欧文分校水文气象学和遥感中心(CHRS)开发,提供了1983年1月1日至2015年12月31日(延迟至今)期间纬度带60N-60S的0.25度的日降水量估算。PERSIANN-CDR的目的是满足对一个一致的、长期的、高分辨率的全球降水数据集的需求,以研究由于气候变化和自然变异而导致的每日降水的变化和趋势,特别是极端降水事件。PERSIANN-CDR是由PERSIANN算法使用GridSat-B1红外数据生成的,并使用全球降水气候学项目(GPCP)的月度产品进行调整,以在整个记录中保持两个数据集在2.5度月尺度上的一致性。PERSIANN-CDR产品可通过NOAA NCDC CDR项目网站上的大气CDRs类别向公众提供,作为实用的气候数据记录。
Ashouri, Hamed
WorldClim 2.1 月尺度降水数据集 (1960-2018)由高空间分辨率的全天天气和气候数据数据库WorldClim提供。降水为每月的累计量,单位为mm。时间覆盖范围为1960到2018年,空间分辨率约为21 km,时间分辨率为月。这些数据由东安格利亚大学气候研究组从CRU-TS-4.03降级而来,使用WorldClim 2.1进行偏差校正得到。CRU-TS-4.03为全球陆地地区气象站的月度观测数据中构建的最新网格化气候数据集。
Philip Jones
全球降水气候数据集(GPCP)由NASA戈达德太空飞行中心制作,数据结合了特殊传感器微波成像仪(SSM/I)项目和散射算法、GOES降水指数(GPI)、输出长波降水指数(OPI)、雨量计和NOAA极轨卫星上的TOVS探测仪的降水估计等数据。GPCP日降水数据集提供全球经纬度1度网格上的日降水积累,从1996年10月开始,一直持续到现在(有一些处理延迟)。 它依赖于GPCP月度产品的月度总降雨量,主要使用地球静止红外卫星图像来确定日降雨率。数据空间分辨率为1°,时间分辨率为天。
George. J. Huffman
MERRA-2 是 NASA 全球建模和同化办公室 (GMAO) 使用戈达德地球观测系统模型 (GEOS) 版本 5.12.4 制作的卫星时代全球大气再分析的最新版本数据集。随着气象同化的增强,MERRA-2 朝着 GMAO 的地球系统再分析目标迈出了重要的一步。MERRA-2 是第一个长期的全球再分析,用于同化基于空间的气溶胶观测并代表它们与气候系统中其他物理过程的相互作用。本数据集是MERRA-2中平均时间为每小时的二维数据收集,涵盖了1980年到2022年的时期,空间分辨率为0.5°*0.625°。该集合包含了中国长江上游的地表诊断数据,例如基流通量、地表温度、径流、表层土壤湿度、根区土壤湿度、表层水、根区层水和六层土壤温度等。数据字段使用从 00:30 UTC 开始的一小时中心时间进行时间标记,例如:00:30、01:30、...、23:30 UTC。
NASA
我们应用基于卫星遥感的蒸散发(ET)算法评估了1983 - 2006年全球陆地ET。该算法使用改进的Penman‐Monteith方法量化冠层蒸腾和土壤蒸发,通过归一化植被差异指数(NDVI)确定生物群落特异性冠层电导,并使用Priestley‐Taylor方法量化开放水域蒸发量。这些算法通过先进的非常高分辨率辐射计(AVHRR) GIMMS NDVI、NCEP/NCAR再分析(NNR)每日地表气象和NASA/GEWEX地表辐射预算发布版本−3.0太阳辐射输入在全球范围内应用。我们使用34个FLUXNET塔站点的观测数据对基于NDVI的冠层电导模型进行参数化,然后使用另外48个独立通量塔的测量数据验证全球ET算法。由现场气象测量和从粗分辨率NNR气象再分析插值得到的气象数据驱动的两组塔级月蒸散发估算结果一致(均方根误差(RMSE) = 13.0-15.3 mm -1;R²= 0.80-0.84),利用全球代表性土地覆盖类型观测到的塔架通量。全球ET结果捕捉到了全球尺度上观测到的时空变化,并进行了比较(RMSE = 186.3 mm yr−1;R2= 0.80),利用覆盖全球植被面积61%的261个盆地的流域尺度水平衡计算得出ET。该研究的结果提供了一个相对长期的全球ET记录,具有很好的量化精度,可用于评估ET气候、陆地水、能源收支和长期水循环变化。
Ke Zhang, John Kimball