该数据集包含从美国国家航空航天局(NASA)Aqua卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器生成的卫星检索的地球物理参数文件。地球物理参数包括日空气表面温度、部分开放水域覆盖估计值、植被光学深度、表面体积土壤湿度和大气总柱可降水蒸气。全球检索是在非沉淀,非雪和非冰覆盖条件下的土地上得出的。土壤水分的空间分辨率为25KM,覆盖全球,时间分辨率为1天。
Jinyang Du
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。本数据集在全国数据集的基础上,裁切出中国西南地区数据进行共享。
宋沛林, 张永强
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为中国长江上游地区。
Wouter Dorigo
GlobeLand30数据研制所使用的分类影像主要是30米多光谱影像,包括美国陆地资源卫星(Landsat)的TM5、ETM+、OLI多光谱影像和中国环境减灾卫星(HJ-1)多光谱影像,2020版数据还使用了16米分辨率高分一号(GF-1)多光谱影像。它采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82。
陈军
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
1985-2020年土地覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年。
刘良云
作为农林生产、土地政策、城市建设、抵御洪涝、火灾防范和传染病传播模拟等方面的重要基础数据,GLASS-GLC也将服务于生态和资源环境的评估、管理和决策,为联合国可持续发展目标的实现提供支持。5kmGLASS土地覆盖数据集是从1982年到2015年土地覆盖长期动态的首次记录。它使用最新版本的GLASS (全球陆地卫星) CDRs (气候数据记录)构建,并在Google Earth Engine ( GEE )平台上生成。包括农田、森林、草地、灌丛、苔原、荒地、雪/冰7类的34年平均总体精度为82.81 %。
Liu Han
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取长江上游地区土壤水分数据。
毛克彪
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
卢麾, 姚盼盼, 赵天杰, 武胜利, 施建成
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。
阳坤