该数据集包括了2003-2018年25km的地表温度数据。所有数据均来自于Google Earth Engine。MOD11A1 V6.1产品在1200 × 1200公里的网格中提供每日地表温度(LST)和发射率值。温度值由 MOD11 _ L2条带积求得。在纬度30度以上的地方,某些像素可能有多个观测值,这些观测值符合晴空的标准。当这种情况发生时,像素值是所有符合条件的观测值的平均值。与白天和夜间地表温度波段及其质量指示层一起提供的是 MODIS 波段31和32以及6个观测层。
Guanyu Dong
该数据集包含了西南地区1998-2020年的地表温度数据。所有数据均来自于Google Earthe Engine网站下载。ERA5是 ECMWF 对过去80年全球气候和天气的第五代再分析。从1940年开始数据就可以查到。ERA5取代 ERA-临时再分析。ERA5每小时提供大量大气、海浪和陆地表面数量的估计值。一个不确定性估计是由一个潜在的10人集合每三个小时采样一次。为了方便起见,预先计算了集合平均值和分布。这种不确定性估计与现有观测系统的信息内容密切相关,而现有观测系统随着时间的推移发生了很大变化。它们还指示了依赖于流动的敏感区域。为了方便许多气候应用程序,也预先计算了月平均数,但没有总平均数和分布数的月平均数。该遥感数据已经广泛应用于植被生态研究领域中。
Guanyu Dong
该数据集为风云卫星FY-2C VISSR的射出长波辐射(OLR) ,时间分辨率为3小时。所有数据均来自于风云卫星遥感数据服务网。卫星OLR产品被广泛应用于气候模式输出参量即模式性能的评估。在中国气象界,OLR资料被用于南海地区夏季风的监测,和西太平洋副高位置的确定。国际上OLR资料用于ITCZ、ENSO的监测和分析。卫星DLR产品应用于气候模式、陆面模式、海洋大气环流模式,作为输入参量或模式性能评估。
吴晓
该数据集包含了西南地区2002-2021年的光合有效辐射数据。所有数据均来自于Google Earthe Engine网站下载。呼吸地球系统模拟器(BESS)是一个简化的基于过程的模型,它将大气和冠层辐射传输、冠层光合作用、蒸腾和能量平衡耦合在一起。它将大气辐射转移模型和人工神经网络与来自 MODIS 大气产品的力耦合起来,生成5公里分辨率的年尺度光合有效辐射产品。该遥感数据已经广泛应用于植被生态研究领域中。
Youngryel Ryu
该数据是国际农业磋商组织(CGIAR)对USGS/NASA的SRTM数据进行处理后所得的成果,比原数据具有更高的质量,更新于2018年11月。数据按5度*5度的经纬差进行分幅组织,每个数据行列数都是6000,每个像元的大小为0.00083333333*0.00083333333(十进制度),在赤道附近约为90米。数据的空间参考采用WGS84椭球地理坐标系统。数据覆盖的范围不仅包括长江上游地区,还扩展到全国。
田永中
LPDR是利用τ-ω模型,从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。
Jinyang Du, John S. Kimball, Lucas A. Jones
LPDR是从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。其中辅助质量控制(QC)位标志文件记录每个25公里网格单元内的平均土地覆盖,并指示其他质量因素,包括丢失Tb观测的非检索条件、冻结表面、积雪覆盖、主动降雨,以及在10.7和18.7 GHz通道中识别的射频干扰(RFI)。
Jinyang Du, John S. Kimball
本数据集中的数据,为长江上游及西南周边地区12.5米ALOS数字高程模型(DEM)分幅数据。数据源于Alaska Satellite Facility (ASF)的Advanced Land Observing Satellite (ALOS) PALSAR 的高分辨率地面校正数据。 数据格式为TIF,空间分辨率为12.5米,坐标系统为WGS_1984_UTM分带投影。数据范围包括覆盖长江上游、西南及周边地区,从行政区角度,它包括重庆、四川、贵州、云南、广西全境,以及西藏东部,青海甘肃陕西南部,广东西部,海南岛,湖南及湖北西部。数据以分幅形式存在,若需要相邻的多幅数据,则应在下载后w对数据进行镶嵌处理。数据可用于各类地形分析。
田永中, ASF DAAC
改革开放以来,中国经济的快速发展对土地利用模式产生了深刻的影响。同时,中国又具有复杂的自然环境背景和广阔的陆地面积,其土地利用变化不仅对国家发展,还对全球环境变化产生了重要的影响。为了恢复和重建我国土地利用变化的现代过程,更好地预测、预报土地利用变化趋势,中国科学院在国家资源环境数据库基础上,以美国陆地卫星Landsat遥感影像数据作为主信息源,通过人工目视解译,建成了国家尺度1:10比例尺多时期土地利用/土地覆盖专题数据库。该数据集裁剪于2015年中国土地利用现状遥感监测数据库是以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的国家尺度1:10比例尺土地利用/土地覆盖专题数据库,精度为30米。数据采用二级分类系统,一级分为耕地、林地、草地、水域、建设用地和未利用土地6类,二级在一级类型基础上进一步分为25个类型。
徐新良
数据是基于10米分辨率的Sentinel-2数据的2017年全球土地覆盖图(FROM-GLC10)。数据来源于清华大学地球系统科学系宫鹏教授研究组与国内外多家单位合作发表在《科学通报》(Science Bulletin)期刊中的《有限全球样本稳定地表覆盖分类:迁移2015年的30米分辨率样本完成2017年的10米分辨率全球地表覆盖制图》。数据经精度检验后的总体精度达到72.76%,精度较高。高分辨率的全球地表覆盖信息,能够更好地进行环境监测,进而维护人类健康和实现联合国可持续发展目标。
宫鹏
SMAP (Soil Moisture Active and Passive) 是美国的地球观测卫星之一,有主动的传感器和被动的传感器。主动的传感器是L波段雷达,被动的传感器是L波段微波辐射计。该植被光学厚度源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,
P. O’neill
该数据集是使用τ-ω模型,结合欧洲航天局(ESA) SMOS任务的微波成像辐射计(MIRAS)在H和V极化L波段(1.4 GHz)获得的TB反演得到的。在TB上应用阈值和2-sigma标准来过滤无效数据。基于这些干扰的建模方法的RFI标志来用于屏蔽受污染的像素。由于SMOS数据的分辨率较粗(在25 - 60公里之间),一个像素内的土壤和植被并不均匀。每个像素TB是每一种植被和土壤类型覆盖率加权的散射总和。该数据空间分辨率为25 km,时间分辨率为1天。
Ahmad Al Bitar
SMAP (Soil Moisture Active and Passive) 是美国的地球观测卫星之一,有主动的传感器和被动的传感器。主动的传感器是L波段雷达,被动的传感器是L波段微波辐射计。该植被光学厚度源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,
P. O’neill
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
VODCA VOD结合了多个传感器 (SSM/ITMI、AMSR-E、Windsat和AMSR-2) 的VOD数据集,以涵盖1987-2017年期间的长期VOD评估来补充现有产品。在聚合之前,这些数据集都利用LPRM重新缩放到AMSR-E中,以消除它们之间的系统差异。该产品为其中的ku波段(~19 GHz, 1987 - 2017)产品。空间分辨率为0.25°,时间分辨率为1天,数据格式为.tif。
Leander Moesinger
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
ALOS (Advanced Land Observing Satellite)是日本的对地观测卫星,于2006年发射。ALOS卫星再有三个传感器:全色遥感立体测绘仪,先进可见光与近红外辐射计-2,相控阵型L波段合成孔径雷达。ALOS-12.5米DEM数据来自于ALOS卫星相控阵型L波段合成孔径雷达(PALSAR)采集,该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。该数据的水平及垂直精度可达12.5米。
NASA
SoilGrids基于约150000个用于训练的土壤剖面和一堆158个基于遥感的土壤协变量(主要来自MODIS土地产品,SRTM DEM衍生物、气候图像和全球地形和岩性图)用于拟合机器学习方法的集合随机森林和梯度,在R包中实现的增强和多项式逻辑回归,对七个标准深度(0、5、15、30、60、100和200 cm)的标准数值土壤特性(有机碳、体积密度、氮、阳离子交换量、pH值、土壤质地含量和粗碎屑)进行了预测。
Tomislav Hengl
版本10r是数据集的当前版本。OCO-2 SIF Lite文件包含偏差校正的太阳诱导叶绿素荧光以及聚合为每日文件的其他选择字段。轨道碳观测站是美国宇航局的第一个任务,旨在收集基于空间的大气二氧化碳测量值,其精度、分辨率和覆盖范围是表征控制其在大气中积累过程所需的精度、分辨率和覆盖范围。 OCO-2 项目使用携带单个仪器的 LEOStar-2 航天器。它包含三个高分辨率光谱仪,可同时测量 1.61 和 2.06 微米附近的近红外 CO2 和 0.76 微米的分子氧 (O2) A 波段中的反射阳光。该集合包括IMAP-DOAS预处理器的输出,该预处理器用于筛选官方XCO2产品以及从0.76微米O2 A波段检索太阳诱导荧光。IMAP-DOAS 预处理器与 ABO2 云屏幕一样,在操作 OCO-2 处理管道中实现。
NASA
卫星检索到的太阳诱导叶绿素荧光(SIF)显示出监测陆地生态系统光合活动的巨大潜力。然而,一些问题,包括网格化数据集的空间和时间分辨率低以及单个检索的高不确定性,限制了SIF的应用。此外,测量足迹的不一致也阻碍了涡流协方差(EC)磁通量塔的总初级生产(GPP)与卫星检索的SIF之间的直接比较。该数据集是通过训练具有中分辨率成像光谱仪表面反射率的神经网络(NN)和轨道碳观测站2(OCO-2)的表面反射因子,生成的全球空间连续的SIF数据集。晴空瞬时CSIF(CSIFclear-inst)对晴空 OCO-2 SIF显示出很高的精度,并且对生物群类型的偏差很小。连续的SIF数据集和派生的GPP-SIF关系可以更好地理解GPP在生物群落和气候中的空间和时间变化。本数据集为中国西南地区4天时间分辨率的日光诱导叶绿素荧光数据集。
Zhang Yao
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区8天时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区年尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区月尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
数据是本项目采用福州大学徐涵秋为监测和评估区域生态变化而开发的遥感生态指数(RSEI)方法对金佛山自然保护地及其毗邻区2000年、2010年和2020年遥感生态质量进行评价的结果。该指数结合了评估区域生态学中常用的四个重要生态指标,分别代表绿色、干燥、潮湿和炎热,利用主成分分析(PCA)将四个指标压缩为一个指标来评估整个区域生态状况。本项目在评价过程中,还使用了USGS官网的Landsat7系列2000年05月12日、2010年05月24日和2020年05月03日的遥感影像数据。
杜文武
金佛山自然保护地及其毗邻区人类活动精细化评估结果数据集主要是运用团队自主构建的人类活动梯度方法,对金佛山自然保护地及其毗邻区2000年、2010年和2020年人类活动影响进行评价的空间分析的评价结果。人类活动的梯度化影响特征的揭示,是高自然度区域人类活动影响评价的关键点。本项目在人类活动梯度模型中,初始化处理了南京师范大学的智慧城市感知与模拟实验室陈旻教授团队发表的中国90座城市建筑屋顶矢量数据集。
杜文武
本数据集基于2012-2021年中国各检测站所监测断面的水质数据,利用R语言对齐进行了相应的数据整理,得到三峡库区内主要监测断面:白帝城、白马、北温泉、寸滩、丰收坝、高洞梁、高阳渡口、和尚山、红花村、湖海场、花台、黄蜡石、江津大桥、黎家乡崔家岩村、两河口、六剑滩、锣鹰、木瓜洞、清溪场、晒网坝共20个监测断面的水质数据,该数据覆盖了库区,具有连续的横断面水质数据信息系,对了解三峡库区水质状况以及后续研究具有重要作用。
陈轩敬
本数据集主要基于中高分辨率(30m)的Landsat8遥感数据集,选择成都市七环内地区为研究区域,采用随机森林的分类方法,解译提取了该区域2020年的水田、旱地、草地、林地、建设用地、水域及水利设施用地及其他用地共7种土地利用类型,并计算了混淆矩阵、总体精度与Kappa系数以验证精确性,其数据精度与同类型和同级别的产品精度相近。该数据可以用于成都市土地资源和现状调查具有重要支撑作用,对于了解成都市土地利用格局研究也具有重要意义。
孙莹
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。本数据在原始数据的基础上,裁切获取中国长江上游地区。
陈永喆, 冯晓明, 傅伯杰
原始基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。本数据集在原始全球数据集的基础上进行区域裁剪所得
陈永喆, 冯晓明, 傅伯杰
该数据集是清华大学地球系统科学系宫鹏团队基于团队2011年以来在全球30米地表覆盖制图中获得的经验和样本库建设方面的积累,结合10米分辨率Sentinel-2全球影像的王铮存储和免费获取,开发出了世界首套30米分辨率的全球地表覆盖产品-FROM-FLC30,该产品基于2017年在《科学通报》发表的全球首套多季节样本库(涵盖2014-2015年Landsat8影像,由专家解译得到的均匀覆盖全球的多季节样本),将该样本库中样本应用于2017年获取的Sentinel-2影像,采用随机森林分类器得到全球30米地覆盖制图。2015年共包括11个一级类和23个二级类,分别为:耕地、林地、草地、灌木、湿地、水、冻土、不透水面、裸地、雪/冰、云;2017年包括10个一级类,分别为:耕地、林地、草地、灌木、湿地、水、冻土、不透水面、裸地、雪/冰
宫鹏
该数据集是清华大学地球系统科学系宫鹏团队基于团队2011年以来在全球30米地表覆盖制图中获得的经验和样本库建设方面的积累,结合10米分辨率Sentinel-2全球影像的王铮存储和免费获取,开发出了世界首套30米分辨率的全球地表覆盖产品-FROM-FLC30,该产品基于2017年在《科学通报》发表的全球首套多季节样本库(涵盖2014-2015年Landsat8影像,由专家解译得到的均匀覆盖全球的多季节样本),将该样本库中样本应用于2017年获取的Sentinel-2影像,采用随机森林分类器得到全球30米地覆盖制图。2015年共包括11个一级类和23个二级类,分别为:耕地、林地、草地、灌木、湿地、水、冻土、不透水面、裸地、雪/冰、云;2017年包括10个一级类,分别为:耕地、林地、草地、灌木、湿地、水、冻土、不透水面、裸地、雪/冰
宫鹏
该数据集是清华大学地球系统科学系宫鹏团队基于团队2011年以来在全球30米地表覆盖制图中获得的经验和样本库建设方面的积累,结合10米分辨率Sentinel-2全球影像的王铮存储和免费获取,开发出了世界首套10米分辨率的全球地表覆盖产品-FROM-FLC10,该产品基于2017年在《科学通报》发表的全球首套多季节样本库(涵盖2014-2015年Landsat8影像,由专家解译得到的均匀覆盖全球的多季节样本),将该样本库中样本应用于2017年获取的Sentinel-2影像,采用随机森林分类器得到全球10米地覆盖制图,共包括10一级类,分别是:耕地、林地、草地、湿地、灌木、水体、冻土、不透水面、冰/雪
宫鹏
MERRA-2 是 NASA 全球建模和同化办公室 (GMAO) 使用戈达德地球观测系统模型 (GEOS) 版本 5.12.4 制作的卫星时代全球大气再分析的最新版本数据集。随着气象同化的增强,MERRA-2 朝着 GMAO 的地球系统再分析目标迈出了重要的一步。MERRA-2 是第一个长期的全球再分析,用于同化基于空间的气溶胶观测并代表它们与气候系统中其他物理过程的相互作用。本数据集是MERRA-2中平均时间为每小时的二维数据收集,涵盖了1980年到2022年的时期,空间分辨率为0.5°*0.625°。该集合包含了中国西南地区的地表诊断数据,例如基流通量、地表温度、径流、表层土壤湿度、根区土壤湿度、表层水、根区层水和六层土壤温度等。数据字段使用从 00:30 UTC 开始的一小时中心时间进行时间标记,例如:00:30、01:30、...、23:30 UTC。
NASA
WorldClim2.1 月尺度降水数据集 (1960-2018)由高空间分辨率的全天天气和气候数据数据库WorldClim提供。降水为每月的累计量,单位为mm。时间覆盖范围为1960到2018年,空间分辨率约为21 km,时间分辨率为月。这些数据由东安格利亚大学气候研究组从CRU-TS-4.03降级而来,使用WorldClim 2.1进行偏差校正得到。CRU-TS-4.03为全球陆地地区气象站的月度观测数据中构建的最新网格化气候数据集。
Philip Jones
TanDEM-X 90m DEM是德国TanDEM-X任务在2010年至2015年期间获得的全球数字高程模型(DEM)数据,2015年完成数据的采集,2016年9月完成全球DEM的制作,其范围覆盖了南北两极之间的所有陆地,精度较高,绝对高程误差约1米。其在地球科学(地质学、冰川学、海洋学、气象学、水文学)、环境研究、土地利用、植被监测、城市和基础设施规划、制图,导航,后勤,危机管理,国防和安全等反面有广泛的应用。
German Aerospace Center
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
植被指数可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。该数据集是基于连续时间序列的SPOT/VEGETATION NDVI卫星遥感数据,采用最大值合成法生成的1998年以来的年度植被指数数据集。该数据集有效反映了地区在空间和时间尺度上的植被覆盖分布和变化状况,对植被变化状况监测、植被资源合理利用和其它生态环境相关领域的研究有十分重要的参考意义。
徐新良
SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国长江上游,格式为TIFF格式。
美国国家航空航天局
这种增强的3级(L3)土壤水分产品提供了土壤湿度主动被动(SMAP)辐射计检索的全球陆地表面状况每日估计值的组合。本产品是 SMAP 2 级 (L2) 土壤湿度的每日复合物,该土壤水分源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,一个方位角等积投影。
P. O’neill
该数据集包含从美国国家航空航天局(NASA)Aqua卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器生成的卫星检索的地球物理参数文件。地球物理参数包括日空气表面温度、部分开放水域覆盖估计值、植被光学深度、表面体积土壤湿度和大气总柱可降水蒸气。全球检索是在非沉淀,非雪和非冰覆盖条件下的土地上得出的。土壤水分的空间分辨率为25KM,覆盖全球,时间分辨率为1天。
Jinyang Du
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。本数据集在全国数据集的基础上,裁切出中国西南地区数据进行共享。
宋沛林, 张永强
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为中国长江上游地区。
Wouter Dorigo
GlobeLand30数据研制所使用的分类影像主要是30米多光谱影像,包括美国陆地资源卫星(Landsat)的TM5、ETM+、OLI多光谱影像和中国环境减灾卫星(HJ-1)多光谱影像,2020版数据还使用了16米分辨率高分一号(GF-1)多光谱影像。它采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82。
陈军
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
1985-2020年土地覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年。
刘良云
作为农林生产、土地政策、城市建设、抵御洪涝、火灾防范和传染病传播模拟等方面的重要基础数据,GLASS-GLC也将服务于生态和资源环境的评估、管理和决策,为联合国可持续发展目标的实现提供支持。5kmGLASS土地覆盖数据集是从1982年到2015年土地覆盖长期动态的首次记录。它使用最新版本的GLASS (全球陆地卫星) CDRs (气候数据记录)构建,并在Google Earth Engine ( GEE )平台上生成。包括农田、森林、草地、灌丛、苔原、荒地、雪/冰7类的34年平均总体精度为82.81 %。
Liu Han
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取长江上游地区土壤水分数据。
毛克彪
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
卢麾, 姚盼盼, 赵天杰, 武胜利, 施建成
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。
阳坤
ASTER GDEM数据由日本METI和美国NASA联合研制并免费面向公众分发。ASTER GDEM数据产品基于“先进星载热发射和反辐射计(ASTER)”数据计算生成,是目前唯一覆盖全球陆地表面的高分辨率高程影像数据。该产品空间分辨率为30m,目前有ASTER GDEM V1, ASTER GDEM V2, ASTER GDEM V3三个版本。2019年8月5日,NASA和METI共同发布了ASTER GDEM V3版本,在V2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。
NASA
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
刘良云课题研发的1985-2020年地表覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年
刘良云
World Cover数据集是欧空局联合全球多家科研机构,共同制作的2020年全球10米土地覆盖产品;该数据产品分辨率为10米,是基于Sentinel-1和Sentinel-2数据进行制作,包括11中土地覆盖类别,分别为:林地、灌木、草地、耕地、建筑、荒漠、雪\冰、水体、湿地、红树林、苔藓\地衣,是在欧洲航天局WorldCover项目框架内生成,该项目是欧空局第5次地球观测网络计划(EOEP -5)的一部分。
欧空局
30米全球地表覆盖数据GlobeLand30是中国研制的30米空间分辨率全球地表覆盖数据,2014年发布GlobeLand30 2000和2010版,2020版已完成。GlobeLand30数据采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82
陈军
该数据产品是基于三十万景Landsat影像,结合现有产品自动稳定样本和目视解译样本生产获得,共包括9个一级类型,分别是:农田、森林、灌木、草地、水体、冰雪、荒地、不透水面、湿地;处理流程包括生成训练和测试样本、构建特征、检查分类和时空一致性,以及与其他产品准确性进行对比均在在GEE 平台上实施,以免于数据下载和管理;该数据集基于5463个独立参考样本,产品整体精度为79.31% ;CLCD数据集揭示了1985-2019年中国土地覆盖变化的趋势和模式:如不透水面(+148.71%)和地表水(+18.39%)的扩大,耕地(-4.85%)和草地(-3.29%)的减少,森林(+4.34%)的增加。总的来说,我们的结果反映了中国快速的城市化和一系列生态工程,揭示了在气候变化下人类活动对区域地表覆盖的影响
黄昕
ALOS (Advanced Land Observing Satellite)是日本的对地观测卫星,于2006年发射。ALOS卫星再有三个传感器:全色遥感立体测绘仪,先进可见光与近红外辐射计-2,相控阵型L波段合成孔径雷达。ALOS-12.5米DEM数据来自于ALOS卫星相控阵型L波段合成孔径雷达(PALSAR)采集,该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。该数据的水平及垂直精度可达12.5米。
NASA
TanDEM-X 90m DEM是德国TanDEM-X任务在2010年至2015年期间获得的全球数字高程模型(DEM)数据,2015年完成数据的采集,2016年9月完成全球DEM的制作,其范围覆盖了南北两极之间的所有陆地,精度较高,绝对高程误差约1米。其在地球科学(地质学、冰川学、海洋学、气象学、水文学)、环境研究、土地利用、植被监测、城市和基础设施规划、制图,导航,后勤,危机管理,国防和安全等反面有广泛的应用。
German Aerospace Center
MOD13Q1.061数据每16天生成一次,空间分辨率为250米(m),为三级产品。MOD13Q1产品提供了归一化植被指数(NDVI)及增强植被指数(Enhanced vegetation Index, EVI)。算法从16天期间的所有获取中选择最佳可用像素值。使用的标准是低云层,低视角,和最高的NDVI/EVI值。除了植被层和两个质量层,HDF 文件具有 MODIS 反射波段 1(红色)、2(近红外)、3(蓝色)和 7(中红外),以及四个观测层。
Steve Running
MOD13Q1.061数据每16天生成一次,空间分辨率为250米(m),为三级产品。MOD13Q1产品提供了归一化植被指数(NDVI)及增强植被指数(Enhanced vegetation Index, EVI)。算法从16天期间的所有获取中选择最佳可用像素值。使用的标准是低云层,低视角,和最高的NDVI/EVI值。除了植被层和两个质量层,HDF 文件具有 MODIS 反射波段 1(红色)、2(近红外)、3(蓝色)和 7(中红外),以及四个观测层.
Steve Running
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长时间序列(1981-2015)NDVI产品,版本号3g.v1。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。该产品的时间分辨率是每月两次,空间分辨率8km,数据格式为geotiff。时间跨度1981年7月至2015年12月。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将中国西南地区部分裁切出来,以便单独开展西南地区的研究分析。
NOAA
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
该实验的观测参数包括归一化离水辐射率、水体悬浮物浓度、水体叶绿素浓度、水体透明度。水色参数地面调查主要在虎头村和歇马两个样地开展试验,基于该区域遥感影像解译获取了水体分布数据。在该区域,水体主要表现为一些人工养殖的鱼塘。本次试验重点关注对象为水域面积相对较大的开阔区域,在2 km2 的无人机飞行区范围内,上部分别选取重点水域1和重点水域2,长宽比分别为90×200 m和90×75 m;下部选择重点水域3,长宽比为90×700 m的水体开展观测。主要应用橡皮艇布点采样。
汤旭光
ASTER GDEM数据由日本METI和美国NASA联合研制并免费面向公众分发。ASTER GDEM数据产品基于“先进星载热发射和反辐射计(ASTER)”数据计算生成,是目前唯一覆盖全球陆地表面的高分辨率高程影像数据。该产品空间分辨率为30m,目前有ASTER GDEM V1, ASTER GDEM V2, ASTER GDEM V3三个版本。2019年8月5日,NASA和METI共同发布了ASTER GDEM V3版本,在V2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。
NASA
该数据集是使用τ-ω模型,结合欧洲航天局(ESA) SMOS任务的微波成像辐射计(MIRAS)在H和V极化L波段(1.4 GHz)获得的TB反演得到的。在TB上应用阈值和2-sigma标准来过滤无效数据。基于这些干扰的建模方法的RFI标志来用于屏蔽受污染的像素。由于SMOS数据的分辨率较粗(在25 - 60公里之间),一个像素内的土壤和植被并不均匀。每个像素TB是每一种植被和土壤类型覆盖率加权的散射总和。该数据空间分辨率为25 km,时间分辨率为1天。
Ahmad Al Bitar
SoilNet是具有无线数据采集与传输功能的土壤水分无线传感器节点。数据采集终端具有自动采集与长时间低功耗运行能力。SoilNet由低功耗高精度无线数据采集终端和土壤温湿度传感器组成。SoilNet温湿度传感器利用传感器探头,基于频率域的介电常数探测原理,得到土壤体积含水量(%)和土壤温度(℃)。此观测使用两个通道的传感器探头(通道1埋于3cm,通道2埋于10cm)来测量3cm和10cm处的土壤水分体积含水量和土壤温度。
张可
VODCA VOD结合了多个传感器 (SSM/ITMI、AMSR-E、Windsat和AMSR-2) 的VOD数据集,以涵盖1987-2017年期间的长期VOD评估来补充现有产品。在聚合之前,这些数据集都利用LPRM重新缩放到AMSR-E中,以消除它们之间的系统差异。该产品为其中的ku波段(~19 GHz, 1987 - 2017)产品。空间分辨率为0.25°,时间分辨率为1天,数据格式为.tif。
Leander Moesinger
Terra和Aqua组合的中分辨率成像光谱仪(MODIS)陆地覆盖气候模拟网格(CMG)(MCD12C1)Version 6数据产品提供了空间聚合和重投影版本的平铺MCD12Q1 Version 6数据产品。国际地圈-生物圈计划(IGBP)、马里兰大学(UMD)和叶面积指数(LAI)分类方案的地图以0.05 °( 5600米)空间分辨率逐年提供。MCD12C1产品的分类值从0-16,共17种土地类型。
NASA
中国长江上游土地覆盖遥感监测数据来源于中国多时相土地覆盖现状数据库,经过多年的积累而建立的覆盖全国陆地区域的数据库。 该数据集包括1970年代末期(1980年)、1980年代末期(1990年)、1995年、2000年、2005年、2010年、2015年、2018年、2020年数据,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,在前一年数据成果基础上,通过人工目视解译生成,数据可靠、质量较高。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
资源环境科学与数据中心
LPDR是从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。其中辅助质量控制(QC)位标志文件记录每个25公里网格单元内的平均土地覆盖,并指示其他质量因素,包括丢失Tb观测的非检索条件、冻结表面、积雪覆盖、主动降雨,以及在10.7和18.7 GHz通道中识别的射频干扰(RFI)。
Jinyang Du, John S. Kimball
科佩尼库斯全球陆地服务( CGLS )被指定为陆地服务的一个组成部分,运营一个多用途服务组件,在全球范围内提供一系列关于陆地表面状态和演变的生物地球物理产品。 CGLS-LC100 ( Dynamic Land Cover Map at 100 m Resolution )是CGLS产品组合中的新产品,提供了100 m空间分辨率的全球土地覆盖图。CGLS土地覆盖产品提供了一个初步的土地覆盖方案。除这些离散的类别外,该产品还包括所有基本土地覆盖类别的连续字段层,为土地覆盖类型提供植被/地表覆盖的比例估计。这种连续的分类方案可能比标准分类方案更好地描述异质性土地覆盖的区域,因此,可以为应用定制(例如森林监测、作物监测、生物多样性与保护、非洲环境与安全监测、气候模拟等)。 这些一致的土地覆盖图(v3.0.1)提供了整个全球范围内2015-2019年的土地覆盖图,来源于PROBA-V100m时间序列、高质量土地覆盖训练场地数据库和若干辅助数据集,历年在Level1达到80 %的精度。计划从2020年起通过使用Sentinel时间序列提供年度更新。
Marcel Buchhorn
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。 中国年度植被指数(NDVI)空间分布数据集(1998-2015年,逐年,1km)是基于连续时间序列的SPOT/VEGETATION NDVI卫星遥感数据,采用最大值合成法生成的1998年以来的年度植被指数数据集。该数据集有效反映了全国各地区在空间和时间尺度上的植被覆盖分布和变化状况,对植被变化状况监测、植被资源合理利用和其它生态环境相关领域的研究有十分重要的参考意义。
徐新良
中国陆地生态系统类型空间分布数据包括1980、1990、1995、2000、2005、2010、2015五年的数据,在遥感解译获取的1:10万比例尺土地利用/土地覆盖数据的基础上,通过对各生态系统类型进行辨识和研究,经过分类处理形成多期中国陆地生态系统类型空间分布数据集,具体划分为7大生态系统类型:(1)农田生态系统(2)森林生态系统(3)草地生态系统(4)水体与湿地生态系统(5)荒漠生态系统(6)聚落生态系统(7)其它生态系统
中国科学院资源环境科学与数据中心
”中国1km陆地生态系统服务价值空间分布数据集“是以全国陆地生态系统类型遥感分类数据为基础,参考谢高地等生态服务价值当量因子法,估算的全国2000年、2005、2010年、2015年和2020年这5个年度的供给服务(食物生产、原料生产、水资源供给)、调节服务(气体调节、气候调节、净化环境、水文调节)、支持服务(土壤保持、维持养分循环、生物多样性)和文化服务(美学景观)共4大类,11种生态系统服务的价值。
徐新良
数据是基于10米分辨率的Sentinel-2数据的2017年中国长江上游及西南地区土地覆盖图(FROM-GLC10)。数据来源于清华大学地球系统科学系宫鹏教授研究组与国内外多家单位合作发表在《科学通报》(Science Bulletin)期刊中的《有限全球样本稳定地表覆盖分类:迁移2015年的30米分辨率样本完成2017年的10米分辨率全球地表覆盖制图》,通过ArcGIS裁剪出中国长江上游及西南地区的相关数据。数据经精度检验后的总体精度达到72.76%,精度较高。高分辨率的全球地表覆盖信息,能够更好地进行环境监测,进而维护人类健康和实现联合国可持续发展目标。
宫鹏
改革开放以来,中国经济的快速发展对土地利用模式产生了深刻的影响。同时,中国又具有复杂的自然环境背景和广阔的陆地面积,其土地利用变化不仅对国家发展,还对全球环境变化产生了重要的影响。为了恢复和重建我国土地利用变化的现代过程,更好地预测、预报土地利用变化趋势,中国科学院在国家资源环境数据库基础上,以美国陆地卫星Landsat遥感影像数据作为主信息源,通过人工目视解译,建成了国家尺度1:10比例尺多时期土地利用/土地覆盖专题数据库。2015年中国土地利用现状遥感监测数据库是以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的国家尺度1:10比例尺土地利用/土地覆盖专题数据库,精度为30米。数据采用二级分类系统,一级分为耕地、林地、草地、水域、建设用地和未利用土地6类,二级在一级类型基础上进一步分为25个类型。
徐新良
数据是国土资源部发布的1999-2015年中国国土资源信息,既有中国国土资源各行业全面情况的综合文字材料,又有系统的统计资料,并对中国国土资源开发进行政策指导、信定、服务和对外交流的国土资源部机关刊,全面反映土地、矿产、海洋和测绘四个方面工作进展情况。统计范围是全国土地资源、矿产资源、海洋资源,国土资源调查、勘查,国家、省(自治区、直辖市)、市(地)、县四级自然资源行政主管部门对土地资源、矿产资源的行政管理和国家对海洋资源的行政管理,国土资源科学技术研究和测绘与地理信息。内容包括国土资源调查、勘查,国土资源开发利用,国土资源行政管理,国土资源科学技术研究,测绘和其他资料。
国家统计局
青木关流域尺度土壤温湿度及降水观测网是重庆金佛山喀斯特生态系统国家野外科学观测研究站的重要水文气象观测节点。该数据集整合了观测网共计12个站点的多层土壤温湿度,以及其中8个站点的降水观测数据。观测站点采用美国Meter公司开发的ECH2O土壤温湿度量测系统,配合Em50数据采集器实现自动监测。观测网于2019年12月建成,采样频率为15min。土壤温湿度监测深度依次为0-5 cm、10 cm、20 cm、40 cm、60 cm。其中,土壤水分(体积含水量,m3 m-3)经由5TM电容传感器测量,土壤温度(K)经由整合在5TM传感器上的热敏电阻测量,降水(mm/15min)由ECRN-100翻斗式雨量计测量。数据以Excel格式存储。
赵龙
宇宙射线中子法是一种百米尺度的土壤水分无损测量方法。本数据是以重庆市青木关槽谷区宇宙射线土壤水分观测系统(COSMOS)同步测得的中子序列为输入,结合周边多个站点的多层土壤水分观测数据,发展了针对该中子观测的土壤水分反演算法。反演算法引入S-G滤波以对COSMOS快中子数进行平滑,同时优化了算法率定和验证阶段不同的数据筛选方案。此外,反演所需气象数据(主要是气压)由布设在COSMOS站点周边的自动气象站提供,用于对原始中子数进行校正。算法生成的宇宙射线土壤水分反演序列时间分辨率为1h。
赵龙
MCD12Q1 V6产品每年提供土地覆盖类型( 2001-2020年),来自六种不同的分类方案,一般采用的是第一个数据集Land cover type1(LC_Type1)IGBP的分类体系,因为其数据类型最为丰富,一共17种土地类型;其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。它是利用MODIS Terra和Aqua反射率数据的监督分类得出的。然后对监督分类进行附加的后处理,其中包括先验知识和辅助信息,以进一步细化特定类。数据空间分辨率为500m。
NASA
本数据来自2022年1月1日-8月26日在重庆市金佛山喀斯特生态系统国家野外科学观测研究虎头村农田观测场(E106.3192621°;N29.76271°,海拔473m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为山茶树和桂花树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。选取的样地位于通量观测塔南侧3米,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2022年1月1日-8月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究柑研所果园观测场(E106.3817569°;N29.76232°,海拔231m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为柚子树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。选取的样地位于通量观测塔南侧3米,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2021年1月17日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究虎头村农田观测场(E106.3192621°;N29.76271°,海拔473m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为山茶树和桂花树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。选取的样地位于通量观测塔南侧3米,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2021年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究柑研所果园观测场(E106.3817569°;N29.76232°,海拔231m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为柚子树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。选取的样地位于通量观测塔南侧3米,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2020年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究柑研所果园观测场(E106.3817569°;N29.76232°,海拔231m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为柚子树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。选取的样地位于通量观测塔南侧3米,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2021年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为松树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。样地依次为TDP-1点,TDP-2点和TDP-3点,位于通量观测塔南侧30米。样树高度从高到低依次为TDP-2、TDP-1、TDP-3,胸径从大到小依次为TDP-2、TDP-3、TDP-1,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2020年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为松树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。样地依次为TDP-1点,TDP-2点和TDP-3点,位于通量观测塔南侧30米。样树高度从高到低依次为TDP-2、TDP-1、TDP-3,胸径从大到小依次为TDP-2、TDP-3、TDP-1,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2019年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为松树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。样地依次为TDP-1点,TDP-2点和TDP-3点,位于通量观测塔南侧30米。样树高度从高到低依次为TDP-2、TDP-1、TDP-3,胸径从大到小依次为TDP-2、TDP-3、TDP-1,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2018年3月6日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的TDP观测数据。TDP观测系统每套共8组探头,观测树种为松树。根据树木的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。样地依次为TDP-1点,TDP-2点和TDP-3点,位于通量观测塔南侧30米。样树高度从高到低依次为TDP-2、TDP-1、TDP-3,胸径从大到小依次为TDP-2、TDP-3、TDP-1,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟,一天144组数据,缺失数据标记为NAN。
孔德兵
本数据来自2021年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的蒸渗仪观测数据。站点下垫面为金佛山北坡原生林。蒸渗仪的采集频率是1Hz,发布数据为10min输出数据。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有三台,位于通量塔南侧30米原生林中,均保持裸土状态。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失或超量程数据,则由NAN标示;(3)日期和时间的格式统一。如,时间为:2020-6-10 10:30;
孔德兵
本数据来自2020年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的蒸渗仪观测数据。站点下垫面为金佛山北坡原生林。蒸渗仪的采集频率是1Hz,发布数据为10min输出数据。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有三台,位于通量塔南侧30米原生林中,均保持裸土状态。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失或超量程数据,则由NAN标示;(3)日期和时间的格式统一。如,时间为:2020-6-10 10:30;
孔德兵
本数据来自2019年1月1日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的蒸渗仪观测数据。站点下垫面为金佛山北坡原生林。蒸渗仪的采集频率是1Hz,发布数据为10min输出数据。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有三台,位于通量塔南侧30米原生林中,均保持裸土状态。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失或超量程数据,则由NAN标示;(3)日期和时间的格式统一。如,时间为:2020-6-10 10:30;
孔德兵
本数据来自2018年4月12日-12月31日在重庆市金佛山喀斯特生态系统国家野外科学观测研究隐仙洞原生林观测场(E107.1941206°;N29.06757°,海拔1194m)的蒸渗仪观测数据。站点下垫面为金佛山北坡原生林。蒸渗仪的采集频率是1Hz,发布数据为10min输出数据。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有三台,位于通量塔南侧30米原生林中,均保持裸土状态。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失或超量程数据,则由NAN标示;(3)日期和时间的格式统一。如,时间为:2020-6-10 10:30;
孔德兵
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长时间序列(1981-2015)NDVI产品,版本号3g.v1。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。该产品的时间分辨率是每月两次,空间分辨率8km,数据格式为geotiff。时间跨度1981年7月至2015年12月。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将中国长江上游部分裁切出来,以便单独开展长江上游地区的研究分析。
NOAA
GLOBMAP叶面积指数产品 (Version 3) 提供了全球1981年以来的高一致性长时间序列叶面积指数(Leaf Area Index, LAI)数据,产品持续更新。数据覆盖全球植被区域,空间分辨率为8km,采用经纬度坐标。产品基于AVHRR和MODIS数据定量融合反演得到,2000年前后分别为AVHRR和MODIS数据反演结果。算法首先基于MODIS地表反射率产品MOD09A1利用GLOBCARBON LAI算法(Deng et al., 2006)反演得到MODIS LAI序列,然后基于两个传感器的重叠观测构建AVHRR GIMMS NDVI与MODIS LAI像元级的关系,并基于该关系回溯反演了AVHRR LAI。
刘荣高
全球植被监测单位开展了多项与土地覆盖制图和监测相关的活动。特别是GVM正在与世界各地的伙伴网络合作,协调和实施全球土地覆盖2000年项目(GLC 2000)。总体目标是为2000年提供一个全球统一的土地覆盖数据库。"2000年"被认为是与各种活动有关的环境评估的参考年,特别是联合国与生态系统有关的国际公约。其中包括了中国2000年土地覆盖数据,共有24种土地覆盖分类和对应的名称,空间分辨率为1km。
Wu Bingfang
GLASS - GLC数据集是以5公里分辨率从1982年到2015年全球土地覆盖34年长期动态的首次记录。它使用最新版本的GLASS (全球陆地卫星) CDRs (气候数据记录)构建,并在Google Earth Engine ( GEE )平台上生成。包括农田、森林、草地、灌丛、苔原、荒地、雪/冰7类的34年平均总体精度为82.81 %。 年度地表覆盖图( 5 km )以Geo TIFF文件格式呈现,以"GLASS-GLC_7classes_year "形式命名,采用WGS 84投影。
Liu Han
该数据集是清华大学地球系统科学系宫鹏团队基于团队2011年以来在全球30米地表覆盖制图中获得的经验和样本库建设方面的积累,结合10米分辨率Sentinel-2全球影像的王铮存储和免费获取,开发出了世界首套10米分辨率的全球地表覆盖产品-FROM-FLC10,该产品基于2017年在《科学通报》发表的全球首套多季节样本库(涵盖2014-2015年Landsat8影像,由专家解译得到的均匀覆盖全球的多季节样本),将该样本库中样本应用于2017年获取的Sentinel-2影像,采用随机森林分类器得到全球10米地覆盖制图,共包括10一级类,分别是:耕地、林地、草地、湿地、灌木、水体、冻土、不透水面、冰/雪
宫鹏
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
该数据集是对国际卫星陆面气候学(ISLSCP)倡议II数据收集的贡献,在0.25 °、0.5 °和1 °三种空间分辨率和两种不同的分类方案下提供。每个空间分辨率都有一个主要的土地覆盖类型分类层,SiB (简单生物圈)分类方案从0到15,IGBP分类方案从1到17。对于使用的每种分类方案,都有对应图层提供每个单元格中每种土地覆盖类型的百分比,从0到100。该数据集代表1992年4月至3月期间出现的土地覆盖类型。因此,时间分辨率为一年。
Tom Loveland
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
World Cover数据集是欧空局联合全球多家科研机构,共同制作的2020年全球10米土地覆盖产品;该数据产品分辨率为10米,是基于Sentinel-1和Sentinel-2数据进行制作,包括11中土地覆盖类别,分别为:林地、灌木、草地、耕地、建筑、荒漠、雪\冰、水体、湿地、红树林、苔藓\地衣,是在欧洲航天局WorldCover项目框架内生成,该项目是欧空局第5次地球观测网络计划(EOEP -5)的一部分。
欧空局
该数据产品是基于三十万景Landsat影像,结合现有产品自动稳定样本和目视解译样本生产获得,共包括9个一级类型,分别是:农田、森林、灌木、草地、水体、冰雪、荒地、不透水面、湿地;处理流程包括生成训练和测试样本、构建特征、检查分类和时空一致性,以及与其他产品准确性进行对比均在在GEE 平台上实施,以免于数据下载和管理;该数据集基于5463个独立参考样本,产品整体精度为79.31% ;CLCD数据集揭示了1985-2019年中国土地覆盖变化的趋势和模式:如不透水面(+148.71%)和地表水(+18.39%)的扩大,耕地(-4.85%)和草地(-3.29%)的减少,森林(+4.34%)的增加。总的来说,我们的结果反映了中国快速的城市化和一系列生态工程,揭示了在气候变化下人类活动对区域地表覆盖的影响
黄昕
刘良云课题研发的1985-2020年地表覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年
刘良云
本数据集是基于土壤剖面和样本汇编的机器学习方法对土壤属性进行预测,长江上游和西南地区范围的土壤属性(砂粒、粘粒、PH、体积密度、有机碳、质地等级)空间分布成图。水平空间分辨率为250m,垂直方向包括六个土层深度:0,10,30,60,100,200cm。格式为GeoTIFF,数据包含6个波段,其中第一到第六个波段依次为土壤粘粒含量在土层深度为0、10、30、60、100、200cm 的值,单位为%。
Tomislav Hengl
30米全球地表覆盖数据GlobeLand30是中国研制的30米空间分辨率全球地表覆盖数据,2014年发布GlobeLand30 2000和2010版,2020版已完成。GlobeLand30数据采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82
陈军
该数据集包含从美国国家航空航天局(NASA)Aqua卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器生成的卫星检索的地球物理参数文件。地球物理参数包括日空气表面温度、部分开放水域覆盖估计值、植被光学深度、表面体积土壤湿度和大气总柱可降水蒸气。全球检索是在非沉淀,非雪和非冰覆盖条件下的土地上得出的。土壤水分的空间分辨率为25KM,覆盖全球,时间分辨率为1天。
Jinyang Du
长江上游及西南地区JRA55再分析3小时数据集(1958-2022),包括气温、大气加热、大气稳定性、亮度温度、冠层特征、云频率、云液态水/冰、蒸散发、 位势高度重力波、热通量、湿度、静水压力、地表温度、土地利用/土地覆盖分类、长波辐射、最高/最低温度、潜在温度、降水量、降水率径流、海平面压力、短波辐射、雪深、土壤水分/含水量、土壤温度、流函数、表面压力、表面粗糙度、地表风、总可降水量、对流层臭氧、高空气温、上层风等要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为1.25°。可为长江上游和西南地区的陆面过程研究提供数据。 该数据集是对美国国家大气研究中心的JRA55气候再分析的陆地部分再处理生成的。 再分析使用物理定律将模型数据与来自世界各地的观察结果结合成一个全球完整的数据集,准确描述了过去的气候。
日本气象厅
SoilGrids基于约150000个用于训练的土壤剖面和一堆158个基于遥感的土壤协变量(主要来自MODIS土地产品,SRTM DEM衍生物、气候图像和全球地形和岩性图)用于拟合机器学习方法的集合随机森林和梯度,在R包中实现的增强和多项式逻辑回归,对七个标准深度(0、5、15、30、60、100和200 cm)的标准数值土壤特性(有机碳、体积密度、氮、阳离子交换量、pH值、土壤质地含量和粗碎屑)进行了预测。
Tomislav Hengl
LPDR是利用τ-ω模型,从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。
Jinyang Du, John S. Kimball, Lucas A. Jones
这种增强的3级(L3)土壤水分产品提供了土壤湿度主动被动(SMAP)辐射计检索的全球陆地表面状况每日估计值的组合。本产品是 SMAP 2 级 (L2) 土壤湿度的每日复合物,该土壤水分源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,一个方位角等积投影。
P. O’neill
卫星检索到的太阳诱导叶绿素荧光(SIF)显示出监测陆地生态系统光合活动的巨大潜力。然而,一些问题,包括网格化数据集的空间和时间分辨率低以及单个检索的高不确定性,限制了SIF的应用。此外,测量足迹的不一致也阻碍了涡流协方差(EC)磁通量塔的总初级生产(GPP)与卫星检索的SIF之间的直接比较。该数据集是通过训练具有中分辨率成像光谱仪表面反射率的神经网络(NN)和轨道碳观测站2(OCO-2)的表面反射因子,生成的全球空间连续的SIF数据集。晴空瞬时CSIF(CSIFclear-inst)对晴空 OCO-2 SIF显示出很高的精度,并且对生物群类型的偏差很小。连续的SIF数据集和派生的GPP-SIF关系可以更好地理解GPP在生物群落和气候中的空间和时间变化。本数据集为中国长江上游4天时间分辨率的日光诱导叶绿素荧光数据集。
Zhang Yao
SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国西南地区,格式为TIFF格式。
美国国家航空航天局
本数据来自2020年10月13日-30日在重庆市北碚区使用DL1000W仪器测量所得。北碚红外测温仪器安装基本情况:北碚红外测温仪器安装下垫面有3种类型,分别为水域,水泥地,棉花,安装地点均在柑研所及其附近。水域(共3个探头)安装时间为2020年10月13日,当天安装好之后即开机测量数据;水泥地(共3个探头)安装时间为2020年10月14日,当天安装好之后即开机测量数据;其中编号为“水泥#中间”的探头为同步当天架设; 棉花地(共3个探头)安装时间为2020年10月18日,当天安装好之后即开机测量数据。
黄雅君
本数据来自2020年10月18日、19日在重庆市北碚区槽上、柑橘研究所和虎头村三个观测站使用LAI-2200植物冠层分析仪测量的数据。地面观测试验是在各遥感实验站常规观测基础上,开展的无人机和有人机过境时刻的地面连续观测和加密观测。地面测量点的选择,既要地物具有代表性,又要满足地物类型符合均一性的特征,因此在无人机飞行区域内择取满足4×4 m大小内地物类型均一的区域作为地面测量点。由于区域内大部分为热带或亚热带混合林,树木高大,林中情况复杂,徒步进入比较困难,因此主要选择容易到达的地点进行测量。测量地点主要分布在公路沿线,包含林地、草地、耕地等类型,其中在柑研所区域,选择了大量覆盖度不同的柑桔园、菜园作为测量点。
马明国
北碚站点位于重庆市北碚区虎头村的常绿阔叶林地内,依托重庆金佛山喀斯特生态系统国家野外科学观测研究站。北碚站点的地理坐标为106.319N,29.762E,海拔512.9米。桂花是该区域的主要树种,林地相对平坦。北碚站点安装有SIFSpec自动SIF测量设备,SIFSpec配备的光谱仪为QE65Pro,信噪比为1000,光谱分辨率0.38nm,采样间隔0.16nm,光谱范围640-800nm,SIFSpec系统采用了 "三明治 "测量方法采集数据,本数据集基于3FLD方法反演约760 nm处的SIF值。
汤旭光
北碚站点位于重庆市北碚区虎头村的常绿阔叶林地内,依托重庆金佛山喀斯特生态系统国家野外科学观测研究站。北碚站点的地理坐标为106.319N,29.762E,海拔512.9米。桂花是该区域的主要树种,林地相对平坦。北碚站点安装有SIFSpec自动SIF测量设备,SIFSpec配备的光谱仪为QE65Pro,信噪比为1000,光谱分辨率0.38nm,采样间隔0.16nm,光谱范围640-800nm,SIFSpec系统采用了 "三明治 "测量方法采集数据,本数据集基于3FLD方法反演约760 nm处的SIF值。
汤旭光
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
MCD15A3H 版本 6.1 中分辨率成像光谱仪 (MODIS) 4 级、光合有效辐射 (FPAR) 的组合分数 (FPAR) 和叶面积指数 (LAI) 产品是一个 4 天的复合数据集,像素大小为 500 米。 该算法在 4 天内从位于 NASA 的 Terra 和 Aqua 卫星上的 MODIS 传感器的所有采集中选择可用的最佳像素。LAI 定义为阔叶树冠中每单位面积的单侧绿叶面积和针叶树冠中每单位面积的总针叶表面积的二分之一。
NASA
本数据来自2022年7月-2023年6月期间在重庆市北碚区虎头村进行的观测数据,依托高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22)。植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。
汤旭光
本数据来自2022年7月-2023年6月期间在重庆市北碚区虎头村进行的观测数据,依托高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22)。叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。
汤旭光
本数据是本项目成员依据高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22),在重庆市北碚区虎头山区域进行地物波谱反射率的实地测量,在研究区域内进行优化布设共设置10个观测点,涵盖多种地物包括桂花林、草地、琵琶林和灌丛等。每次观测在上午10:00至下午16:00之间进行且无云层遮盖的天气条件下,每个观测点进行一天内观测两次,每次记录10条波谱曲线,观测周期试天气情况而定,最终汇总数据。
汤旭光
版本10r是数据集的当前版本。OCO-2 SIF Lite文件包含偏差校正的太阳诱导叶绿素荧光以及聚合为每日文件的其他选择字段。轨道碳观测站是美国宇航局的第一个任务,旨在收集基于空间的大气二氧化碳测量值,其精度、分辨率和覆盖范围是表征控制其在大气中积累过程所需的精度、分辨率和覆盖范围。 OCO-2 项目使用携带单个仪器的 LEOStar-2 航天器。它包含三个高分辨率光谱仪,可同时测量 1.61 和 2.06 微米附近的近红外 CO2 和 0.76 微米的分子氧 (O2) A 波段中的反射阳光。该集合包括IMAP-DOAS预处理器的输出,该预处理器用于筛选官方XCO2产品以及从0.76微米O2 A波段检索太阳诱导荧光。IMAP-DOAS 预处理器与 ABO2 云屏幕一样,在操作 OCO-2 处理管道中实现。
NASA
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国长江上游年尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国长江上游月尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国长江上游8天时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
该数据集提供了描述陆地表面的地图,分为22个类别,这些类别已经使用联合国粮农组织( FAO)的土地覆盖分类系统(LCCS)定义。除了土地覆盖(LC)地图外,还制作了四个质量标志,以记录分类和变化检测的可靠性。 为了保证连续性,这些土地覆盖图与欧洲空间局(ESA)气候变化倡议(CCI)制作的1990年代至2015年的全球年度LC图系列一致,也可在ESA CCI LC Viewer上获取。为了产生这个数据集,整个中分辨率成像光谱仪(MERIS)从2003年到2012年的全分辨率和低分辨率档案首先被分类成一个独特的10年基线LC图。然后利用(i) 1992-1999年的高级甚高分辨率辐射计(AVHRR)时间序列、(ii) 1998-2012年的SPOT-vegetation (SPOT-VGT)时间序列和(iii) 2013年的PROBA-vegetation (PROBA-V)和Sentinel-3 OLCI (S3OLCI)时间序列的变化来反演和更新。 除了气候建模社区之外,该数据集的长期一致性、年度更新和全球范围内的高度专题细节使其在土地核算、森林监测和荒漠化等众多应用以及科学研究方面具有吸引力。
欧空局
本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包含2017-2022年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间较早(2017年5月-至今),龙洞塘地下河的数据记录时间较晚(2018年-至今),野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
本数据集包括歇马虎头村附近耕地、林地、草地等不同土地利用方式下的土壤有机碳及组分、土壤养分、土壤质地、土壤团聚体等数据信息。土壤样品采用土钻法取得,每种土地利用方式下设置4个重复。采集的土壤样品经过2 mm和0.25μm的筛后进行相关指标的测定。其中土壤有机碳及其组分采用重铬酸钾氧化-硫酸亚铁滴定法测定;土壤质地采用激光粒度仪测定;土壤团聚体采用湿筛法获得大团聚体,小团聚体和粉粘粒团聚体三个组分;土壤全氮采用凯式定氮法测定,土壤全磷采用高氯酸-硫酸法测定。
禹朴家
本数据集包含2017年重庆市酉阳县泔溪镇石漠化治理区地下水水化学演变数据,包括表层岩溶泉老泉与地下河出口龙洞塘的电导率、溶解氧、pH、水温、水位及降水量数据,数据记录的时间间隔为15分钟。其中,老泉的数据记录时间比龙洞塘地下河的数据早(2017年5月-2017年12月),则龙洞塘地下河在2017年没有观测数据。野外在线仪器运行稳定,记录数据保持较好的连续性。该数据为了解和研究石漠化地区地下水的时空变化特征及水资源保护提供第一手的资料。
杨琰
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为西南地区。
Wouter Dorigo
PERSIANN-CDR(利用人工神经网络从遥感信息中估算降水--气候数据记录)由加州大学欧文分校水文气象学和遥感中心(CHRS)开发,提供了1983年1月1日至2015年12月31日(延迟至今)期间纬度带60N-60S的0.25度的日降水量估算。PERSIANN-CDR的目的是满足对一个一致的、长期的、高分辨率的全球降水数据集的需求,以研究由于气候变化和自然变异而导致的每日降水的变化和趋势,特别是极端降水事件。PERSIANN-CDR是由PERSIANN算法使用GridSat-B1红外数据生成的,并使用全球降水气候学项目(GPCP)的月度产品进行调整,以在整个记录中保持两个数据集在2.5度月尺度上的一致性。PERSIANN-CDR产品可通过NOAA NCDC CDR项目网站上的大气CDRs类别向公众提供,作为实用的气候数据记录。
Ashouri, Hamed
WorldClim 2.1 月尺度降水数据集 (1960-2018)由高空间分辨率的全天天气和气候数据数据库WorldClim提供。降水为每月的累计量,单位为mm。时间覆盖范围为1960到2018年,空间分辨率约为21 km,时间分辨率为月。这些数据由东安格利亚大学气候研究组从CRU-TS-4.03降级而来,使用WorldClim 2.1进行偏差校正得到。CRU-TS-4.03为全球陆地地区气象站的月度观测数据中构建的最新网格化气候数据集。
Philip Jones
全球降水气候数据集(GPCP)由NASA戈达德太空飞行中心制作,数据结合了特殊传感器微波成像仪(SSM/I)项目和散射算法、GOES降水指数(GPI)、输出长波降水指数(OPI)、雨量计和NOAA极轨卫星上的TOVS探测仪的降水估计等数据。GPCP日降水数据集提供全球经纬度1度网格上的日降水积累,从1996年10月开始,一直持续到现在(有一些处理延迟)。 它依赖于GPCP月度产品的月度总降雨量,主要使用地球静止红外卫星图像来确定日降雨率。数据空间分辨率为1°,时间分辨率为天。
George. J. Huffman
MERRA-2 是 NASA 全球建模和同化办公室 (GMAO) 使用戈达德地球观测系统模型 (GEOS) 版本 5.12.4 制作的卫星时代全球大气再分析的最新版本数据集。随着气象同化的增强,MERRA-2 朝着 GMAO 的地球系统再分析目标迈出了重要的一步。MERRA-2 是第一个长期的全球再分析,用于同化基于空间的气溶胶观测并代表它们与气候系统中其他物理过程的相互作用。本数据集是MERRA-2中平均时间为每小时的二维数据收集,涵盖了1980年到2022年的时期,空间分辨率为0.5°*0.625°。该集合包含了中国长江上游的地表诊断数据,例如基流通量、地表温度、径流、表层土壤湿度、根区土壤湿度、表层水、根区层水和六层土壤温度等。数据字段使用从 00:30 UTC 开始的一小时中心时间进行时间标记,例如:00:30、01:30、...、23:30 UTC。
NASA
我们应用基于卫星遥感的蒸散发(ET)算法评估了1983 - 2006年全球陆地ET。该算法使用改进的Penman‐Monteith方法量化冠层蒸腾和土壤蒸发,通过归一化植被差异指数(NDVI)确定生物群落特异性冠层电导,并使用Priestley‐Taylor方法量化开放水域蒸发量。这些算法通过先进的非常高分辨率辐射计(AVHRR) GIMMS NDVI、NCEP/NCAR再分析(NNR)每日地表气象和NASA/GEWEX地表辐射预算发布版本−3.0太阳辐射输入在全球范围内应用。我们使用34个FLUXNET塔站点的观测数据对基于NDVI的冠层电导模型进行参数化,然后使用另外48个独立通量塔的测量数据验证全球ET算法。由现场气象测量和从粗分辨率NNR气象再分析插值得到的气象数据驱动的两组塔级月蒸散发估算结果一致(均方根误差(RMSE) = 13.0-15.3 mm -1;R²= 0.80-0.84),利用全球代表性土地覆盖类型观测到的塔架通量。全球ET结果捕捉到了全球尺度上观测到的时空变化,并进行了比较(RMSE = 186.3 mm yr−1;R2= 0.80),利用覆盖全球植被面积61%的261个盆地的流域尺度水平衡计算得出ET。该研究的结果提供了一个相对长期的全球ET记录,具有很好的量化精度,可用于评估ET气候、陆地水、能源收支和长期水循环变化。
Ke Zhang, John Kimball
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。
张永强
MOD16A2 Version 6蒸散发/潜热通量产品是一个8天合成数据集,以500米(m)像素分辨率生成。用于MOD16数据产品收集的算法基于Penman-Monteith方程的逻辑,其中包括每日气象再分析数据的输入以及中分辨率成像光谱仪(MODIS)遥感数据产品,如植被特性动态、反照率和土地覆盖。MOD16A2产品提供了复合蒸散(ET)层、潜热通量(LE)层、电位ET (PET)层和电位LE (PLE)层以及质量控制层。每个MOD16A2颗粒还可使用两个低分辨率浏览图像ET和LE。两个蒸散层(ET和PET)的像元值是综合周期内所有8天的像元值之和,两个潜热层(LE和PLE)的像元值是综合周期内所有8天的像元值平均值。注意,每年的最后一次采集周期是5或6天的综合周期,具体取决于年份。
NASA, Steve Running
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。
阳坤
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取西南地区土壤水分数据。
毛克彪
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。本数据集在全国数据集的基础上,裁切出中国西南地区数据进行共享。
宋沛林, 张永强
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
卢麾,, 姚盼盼, 赵天杰, 武胜利, 施建成
中国西南地区(四川,重庆,云南,贵州)Landsat8地表反射率数据集的数据集是基于 Landsat 8 OLI/TIRS 传感器得到的,该数据的表面反射率已经经过了大气校正。这些图像的波段包含 了5 个可见和近红外 (VNIR) 波段和 2 个短波红外 (SWIR) 波段,处理为正射校正表面反射率;以及两个热红外 (TIR) 波段,处理为正射校正亮温。数据时间分辨率为月尺度,并经过了去云处理。时间范围为2013年3月到2021年12月,数据坐标系为WGS84地理坐标系。
马明国