我们应用基于卫星遥感的蒸散发(ET)算法评估了1983 - 2006年全球陆地ET。该算法使用改进的Penman‐Monteith方法量化冠层蒸腾和土壤蒸发,通过归一化植被差异指数(NDVI)确定生物群落特异性冠层电导,并使用Priestley‐Taylor方法量化开放水域蒸发量。这些算法通过先进的非常高分辨率辐射计(AVHRR) GIMMS NDVI、NCEP/NCAR再分析(NNR)每日地表气象和NASA/GEWEX地表辐射预算发布版本−3.0太阳辐射输入在全球范围内应用。我们使用34个FLUXNET塔站点的观测数据对基于NDVI的冠层电导模型进行参数化,然后使用另外48个独立通量塔的测量数据验证全球ET算法。由现场气象测量和从粗分辨率NNR气象再分析插值得到的气象数据驱动的两组塔级月蒸散发估算结果一致(均方根误差(RMSE) = 13.0-15.3 mm -1;R²= 0.80-0.84),利用全球代表性土地覆盖类型观测到的塔架通量。全球ET结果捕捉到了全球尺度上观测到的时空变化,并进行了比较(RMSE = 186.3 mm yr−1;R2= 0.80),利用覆盖全球植被面积61%的261个盆地的流域尺度水平衡计算得出ET。该研究的结果提供了一个相对长期的全球ET记录,具有很好的量化精度,可用于评估ET气候、陆地水、能源收支和长期水循环变化。
Ke Zhang, John Kimball
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。
张永强
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾