植被覆盖度指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。植被的覆盖度可分为高、中高、中、低四种覆盖类型。覆盖度的检测主要有地表实测法和遥感监测法。获得产品为地面测量点规则采集的清晰相片,相片包含植被和裸土或者植被和天空,相片中植被在整个相片中所占比例为该相片的植被覆盖度,相同地面测量点的植被覆盖度均值为该地面观测点的植被覆盖度。植被覆盖度是衡量地表植被状况的一个重要指标,是描述生态系统的重要基础数据,也是区域生态系统环境变化的重要指示,对水文、生态、区域变化等都具有重要意义。植被覆盖度为植被在地面的垂直投影面积占统计区总面积的百分比,它的取值范围为0-1,植被越茂盛,覆盖度越大,反之越小,大于1或者小于0的值为错误值。
马明国
GLOBMAP叶面积指数产品 (Version 3) 提供了全球1981年以来的高一致性长时间序列叶面积指数(Leaf Area Index, LAI)数据,产品持续更新。数据覆盖全球植被区域,空间分辨率为8km,采用经纬度坐标。产品基于AVHRR和MODIS数据定量融合反演得到,2000年前后分别为AVHRR和MODIS数据反演结果。算法首先基于MODIS地表反射率产品MOD09A1利用GLOBCARBON LAI算法(Deng et al., 2006)反演得到MODIS LAI序列,然后基于两个传感器的重叠观测构建AVHRR GIMMS NDVI与MODIS LAI像元级的关系,并基于该关系回溯反演了AVHRR LAI。
刘荣高
该数据集包括:大气顶射出长波辐射实时产品以及射出长波辐射实时产品。卫星 OLR 产品被广泛应用于气候模式输出参量即模式性能的评估。在中国气象界,OLR 资料被用于南海地区夏季风的监测,和西太平洋副高位置的确定。国际上 OLR 资料用于 ITCZ、ENSO 的监测和分析。为天气、气候模式及陆面模式提供输入及验证,为太阳能工业及森林草场火险监测预警提供地表太阳辐射分布信息。卫星 ULR 产品应用于气候模式、陆面模式、海洋大气环流模式,作为输入参量或模式性能评估,也用于地震诊断。
王志伟
本数据来自2020年10月18日、19日在重庆市北碚区槽上、柑橘研究所和虎头村三个观测站使用LAI-2200植物冠层分析仪测量的数据。地面观测试验是在各遥感实验站常规观测基础上,开展的无人机和有人机过境时刻的地面连续观测和加密观测。地面测量点的选择,既要地物具有代表性,又要满足地物类型符合均一性的特征,因此在无人机飞行区域内择取满足4×4 m大小内地物类型均一的区域作为地面测量点。由于区域内大部分为热带或亚热带混合林,树木高大,林中情况复杂,徒步进入比较困难,因此主要选择容易到达的地点进行测量。测量地点主要分布在公路沿线,包含林地、草地、耕地等类型,其中在柑研所区域,选择了大量覆盖度不同的柑桔园、菜园作为测量点。
马明国
该数据集提供了来自欧洲气象卫星 (EUMETSAT) MetOp-A 上的全球臭氧监测实验 2 (GOME-2) 仪器的叶绿素估计值的 2 级 (L2) 太阳诱导荧光 (SIF)数据,光谱分辨率约为 0.5 nm,并且波长在 734 和 758 nm 之间。 GOME-2 以约 40 公里 x 80 公里或创纪录的 40 公里 x 40 公里的分辨率在轨道基础上覆盖约 70 至 -57 度纬度之间的全球陆地。数据为 2007 年 2 月 1 日至 2018 年 1 月 31 日期间的数据。每个文件包含每日原始和偏差调整的太阳诱导荧光、质量控制信息和辅助数据。 SIF 测量可以提供有关植被功能状态的信息,包括光利用效率和全球初级生产力,可用于全球碳循环建模和农业应用。 GOME-2 SIF 产品由于信号电平低而具有固有的噪声,并且仅经过了有限的验证。该数据集中包含 3773 个 netCDF (*.nc) 格式的数据文件。数据变量被格式化为符合 CF 元数据约定的轨迹。本数据集提供的为中国长江上游的日平均SIF数据。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
该数据集提供了中国长江上游的二级(L2)太阳诱导荧光(SIF)的叶绿素估计值,该估计值来自欧洲航天局(ESA)环境卫星(Envisat)上的Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY(SCIAMACHY)仪器,光谱分辨率约0.5纳米,波长在734-758纳米之间。提供了从2003-01-01到2012-04-08期间的数据。每个文件都包含每天的原始和偏差调整的太阳诱导荧光,以及质量控制信息和辅助数据。本数据集为740 nm处反演的SIF。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
该数据集以0.05度(赤道约5公里)的空间分辨率和16天的时间分辨率提供了2014年9月至2020年7月的中国西南地区连续的全球平均日太阳诱导叶绿素荧光(SIF)数据。该产品来自于轨道碳观测站-2(OCO-2)的SIF观测,通过对OCO-2的原生SIF观测和沿OCO-2轨道的MODIS BRDF校正的七波段表面反射率进行人工神经网络(ANN)训练而产生。然后,根据MODIS反射率和土地覆盖率,将训练好的ANN模型应用于预测OCO-2的空白区域的平均每日SIF(mW/m2/nm/sr)。该框架按生物群落和16天的时间步骤进行分层。
Longlong Yu, Jiaming Wen, Christine Yao-Yun Chang, Christian Frankenberg, Ying Sun
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
MCD15A3H 版本 6.1 中分辨率成像光谱仪 (MODIS) 4 级、光合有效辐射 (FPAR) 的组合分数 (FPAR) 和叶面积指数 (LAI) 产品是一个 4 天的复合数据集,像素大小为 500 米。 该算法在 4 天内从位于 NASA 的 Terra 和 Aqua 卫星上的 MODIS 传感器的所有采集中选择可用的最佳像素。LAI 定义为阔叶树冠中每单位面积的单侧绿叶面积和针叶树冠中每单位面积的总针叶表面积的二分之一。
NASA
The Global Land Evaporation Amsterdam Model(GLEAM)是一套根据卫星观测分别估算陆地蒸发的不同组成部分的算法。GLEAM 中的 Priestley 和 Taylor 方程根据对地表净辐射和近地表气温的观测来计算蒸散发。该产品的时间分辨率是每天,空间分辨率0.25° x 0.25°,数据格式为netCDF。时间跨度1980-2021。该数据集为合理分配区域水资源提供科学依据。
ir. Akash Koppa