原始基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。本数据集在原始全球数据集的基础上进行区域裁剪所得
陈永喆, 冯晓明, 傅伯杰
该数据集是使用τ-ω模型,结合欧洲航天局(ESA) SMOS任务的微波成像辐射计(MIRAS)在H和V极化L波段(1.4 GHz)获得的TB反演得到的。在TB上应用阈值和2-sigma标准来过滤无效数据。基于这些干扰的建模方法的RFI标志来用于屏蔽受污染的像素。由于SMOS数据的分辨率较粗(在25 - 60公里之间),一个像素内的土壤和植被并不均匀。每个像素TB是每一种植被和土壤类型覆盖率加权的散射总和。该数据空间分辨率为25 km,时间分辨率为1天。
Ahmad Al Bitar
数据是基于10米分辨率的Sentinel-2数据的2017年中国长江上游及西南地区土地覆盖图(FROM-GLC10)。数据来源于清华大学地球系统科学系宫鹏教授研究组与国内外多家单位合作发表在《科学通报》(Science Bulletin)期刊中的《有限全球样本稳定地表覆盖分类:迁移2015年的30米分辨率样本完成2017年的10米分辨率全球地表覆盖制图》,通过ArcGIS裁剪出中国长江上游及西南地区的相关数据。数据经精度检验后的总体精度达到72.76%,精度较高。高分辨率的全球地表覆盖信息,能够更好地进行环境监测,进而维护人类健康和实现联合国可持续发展目标。
宫鹏