SMAP (Soil Moisture Active and Passive) 是美国的地球观测卫星之一,有主动的传感器和被动的传感器。主动的传感器是L波段雷达,被动的传感器是L波段微波辐射计。该植被光学厚度源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,
P. O’neill
该数据集是使用τ-ω模型,结合欧洲航天局(ESA) SMOS任务的微波成像辐射计(MIRAS)在H和V极化L波段(1.4 GHz)获得的TB反演得到的。在TB上应用阈值和2-sigma标准来过滤无效数据。基于这些干扰的建模方法的RFI标志来用于屏蔽受污染的像素。由于SMOS数据的分辨率较粗(在25 - 60公里之间),一个像素内的土壤和植被并不均匀。每个像素TB是每一种植被和土壤类型覆盖率加权的散射总和。该数据空间分辨率为25 km,时间分辨率为1天。
Ahmad Al Bitar
SMAP (Soil Moisture Active and Passive) 是美国的地球观测卫星之一,有主动的传感器和被动的传感器。主动的传感器是L波段雷达,被动的传感器是L波段微波辐射计。该植被光学厚度源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,
P. O’neill
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
VODCA VOD结合了多个传感器 (SSM/ITMI、AMSR-E、Windsat和AMSR-2) 的VOD数据集,以涵盖1987-2017年期间的长期VOD评估来补充现有产品。在聚合之前,这些数据集都利用LPRM重新缩放到AMSR-E中,以消除它们之间的系统差异。该产品为其中的ku波段(~19 GHz, 1987 - 2017)产品。空间分辨率为0.25°,时间分辨率为1天,数据格式为.tif。
Leander Moesinger
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
版本10r是数据集的当前版本。OCO-2 SIF Lite文件包含偏差校正的太阳诱导叶绿素荧光以及聚合为每日文件的其他选择字段。轨道碳观测站是美国宇航局的第一个任务,旨在收集基于空间的大气二氧化碳测量值,其精度、分辨率和覆盖范围是表征控制其在大气中积累过程所需的精度、分辨率和覆盖范围。 OCO-2 项目使用携带单个仪器的 LEOStar-2 航天器。它包含三个高分辨率光谱仪,可同时测量 1.61 和 2.06 微米附近的近红外 CO2 和 0.76 微米的分子氧 (O2) A 波段中的反射阳光。该集合包括IMAP-DOAS预处理器的输出,该预处理器用于筛选官方XCO2产品以及从0.76微米O2 A波段检索太阳诱导荧光。IMAP-DOAS 预处理器与 ABO2 云屏幕一样,在操作 OCO-2 处理管道中实现。
NASA
卫星检索到的太阳诱导叶绿素荧光(SIF)显示出监测陆地生态系统光合活动的巨大潜力。然而,一些问题,包括网格化数据集的空间和时间分辨率低以及单个检索的高不确定性,限制了SIF的应用。此外,测量足迹的不一致也阻碍了涡流协方差(EC)磁通量塔的总初级生产(GPP)与卫星检索的SIF之间的直接比较。该数据集是通过训练具有中分辨率成像光谱仪表面反射率的神经网络(NN)和轨道碳观测站2(OCO-2)的表面反射因子,生成的全球空间连续的SIF数据集。晴空瞬时CSIF(CSIFclear-inst)对晴空 OCO-2 SIF显示出很高的精度,并且对生物群类型的偏差很小。连续的SIF数据集和派生的GPP-SIF关系可以更好地理解GPP在生物群落和气候中的空间和时间变化。本数据集为中国西南地区4天时间分辨率的日光诱导叶绿素荧光数据集。
Zhang Yao
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区8天时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区年尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng