该数据是国际农业磋商组织(CGIAR)对USGS/NASA的SRTM数据进行处理后所得的成果,比原数据具有更高的质量,更新于2018年11月。数据按5度*5度的经纬差进行分幅组织,每个数据行列数都是6000,每个像元的大小为0.00083333333*0.00083333333(十进制度),在赤道附近约为90米。数据的空间参考采用WGS84椭球地理坐标系统。数据覆盖的范围不仅包括长江上游地区,还扩展到全国。
田永中
LPDR是利用τ-ω模型,从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。
Jinyang Du, John S. Kimball, Lucas A. Jones
这是每日网格OCO-2二氧化碳同化数据集。OCO-2任务提供了迄今为止最高质量的天基XCO2回收。然而,由于OCO-2的10公里地面轨道很窄,无法穿透云层和厚厚的气溶胶,该仪器数据的特点是覆盖范围有很大的差距。这个全局网格数据集是使用一种数据同化技术生成的,通常在地球物理文献中称为状态估计。数据同化综合模拟和观测结果,调整大气成分(如CO2)的状态,以反映观测值,因此,根据GEOS以前的观测和短输运模拟,填补观测数据的空缺。与其他方法相比,数据同化的优势在于它基于我们的集体科学理解,特别是对地球碳循环和大气运输的理解进行估计。OCO -2 GEOS(戈达德地球观测系统)3级数据是通过GEOS CoDAS每6小时摄取一次OCO-2 L2检索数据产生的,GEOS CoDAS是一个由NASA全球建模和同化办公室(GMAO)维护的建模和数据同化系统。GEOS CoDAS使用网格点统计插值方法的高性能计算实现来解决状态估计问题。GSI找到了使状态估计问题的三维变分(3D-Var)代价函数公式最小的分析状态。
NASA
这是网格化月度二氧化碳二氧化碳同化数据集。OCO-2任务提供了迄今为止最高质量的天基XCO2回收。然而,由于OCO-2的10公里地面轨道很窄,无法穿透云层和厚厚的气溶胶,该仪器数据的特点是覆盖范围有很大的差距。这个全局网格数据集是使用一种数据同化技术生成的,通常在地球物理文献中称为状态估计。数据同化综合模拟和观测结果,调整大气成分(如CO2)的状态,以反映观测值,因此,根据GEOS以前的观测和短输运模拟,填补观测数据的空缺。与其他方法相比,数据同化的优势在于它基于我们的集体科学理解,特别是对地球碳循环和大气运输的理解进行估计。OCO -2 GEOS(戈达德地球观测系统)3级数据是通过GEOS CoDAS每6小时摄取一次OCO-2 L2检索数据产生的,GEOS CoDAS是一个由NASA全球建模和同化办公室(GMAO)维护的建模和数据同化系统。GEOS CoDAS使用网格点统计插值方法的高性能计算实现来解决状态估计问题。GSI找到了使状态估计问题的三维变分(3D-Var)代价函数公式最小的分析状态。
NASA
本数据集中的数据,为长江上游及西南周边地区12.5米ALOS数字高程模型(DEM)分幅数据。数据源于Alaska Satellite Facility (ASF)的Advanced Land Observing Satellite (ALOS) PALSAR 的高分辨率地面校正数据。 数据格式为TIF,空间分辨率为12.5米,坐标系统为WGS_1984_UTM分带投影。数据范围包括覆盖长江上游、西南及周边地区,从行政区角度,它包括重庆、四川、贵州、云南、广西全境,以及西藏东部,青海甘肃陕西南部,广东西部,海南岛,湖南及湖北西部。数据以分幅形式存在,若需要相邻的多幅数据,则应在下载后w对数据进行镶嵌处理。数据可用于各类地形分析。
田永中, ASF DAAC
改革开放以来,中国经济的快速发展对土地利用模式产生了深刻的影响。同时,中国又具有复杂的自然环境背景和广阔的陆地面积,其土地利用变化不仅对国家发展,还对全球环境变化产生了重要的影响。为了恢复和重建我国土地利用变化的现代过程,更好地预测、预报土地利用变化趋势,中国科学院在国家资源环境数据库基础上,以美国陆地卫星Landsat遥感影像数据作为主信息源,通过人工目视解译,建成了国家尺度1:10比例尺多时期土地利用/土地覆盖专题数据库。该数据集裁剪于2015年中国土地利用现状遥感监测数据库是以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的国家尺度1:10比例尺土地利用/土地覆盖专题数据库,精度为30米。数据采用二级分类系统,一级分为耕地、林地、草地、水域、建设用地和未利用土地6类,二级在一级类型基础上进一步分为25个类型。
徐新良
SMAP (Soil Moisture Active and Passive) 是美国的地球观测卫星之一,有主动的传感器和被动的传感器。主动的传感器是L波段雷达,被动的传感器是L波段微波辐射计。该植被光学厚度源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,
P. O’neill
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
MODIS反射率产品是计算地球地表反照率过程中最常用的数据,分为MOD09GA与MYD09GA两种,分别对应terra与aqua卫星。MOD/MYD09GA产品的时间分辨率为天,地理分辨率为1km,反射率空间分辨率为500m。每幅影像的500m反射率数据集中提供了1-7波段的反射率、质量评估等级、观测范围、观测数和250m扫描信息等。1km地理信息数据集中提供了观测次数、质量评估等级、传感器方位角天顶角、太阳方位角高度角、轨道指针等信息。
NASA
该数据为长江上游及周边地区1990-2021年2.5级以上地震矢量数据(点)。它是该时段全球地震数据的一个子集,地理坐标介于东经88度-112度,北纬20度至40度之间,除包括整个长江上游地区外,在行政区上包括重庆、四川、贵州、云南、广西、陕西、宁夏、青海的全域,西藏东部、甘肃南部,以及西南国境外部分地区。数据格式为Shapefile。生成该数据的原始数据来源于美国地质调查局(USGS)的地震统计数据,根据其中的经纬度生成点,并保留了记录中的地震属性数据。
田永中
版本10r是数据集的当前版本。OCO-2 SIF Lite文件包含偏差校正的太阳诱导叶绿素荧光以及聚合为每日文件的其他选择字段。轨道碳观测站是美国宇航局的第一个任务,旨在收集基于空间的大气二氧化碳测量值,其精度、分辨率和覆盖范围是表征控制其在大气中积累过程所需的精度、分辨率和覆盖范围。 OCO-2 项目使用携带单个仪器的 LEOStar-2 航天器。它包含三个高分辨率光谱仪,可同时测量 1.61 和 2.06 微米附近的近红外 CO2 和 0.76 微米的分子氧 (O2) A 波段中的反射阳光。该集合包括IMAP-DOAS预处理器的输出,该预处理器用于筛选官方XCO2产品以及从0.76微米O2 A波段检索太阳诱导荧光。IMAP-DOAS 预处理器与 ABO2 云屏幕一样,在操作 OCO-2 处理管道中实现。
NASA
卫星检索到的太阳诱导叶绿素荧光(SIF)显示出监测陆地生态系统光合活动的巨大潜力。然而,一些问题,包括网格化数据集的空间和时间分辨率低以及单个检索的高不确定性,限制了SIF的应用。此外,测量足迹的不一致也阻碍了涡流协方差(EC)磁通量塔的总初级生产(GPP)与卫星检索的SIF之间的直接比较。该数据集是通过训练具有中分辨率成像光谱仪表面反射率的神经网络(NN)和轨道碳观测站2(OCO-2)的表面反射因子,生成的全球空间连续的SIF数据集。晴空瞬时CSIF(CSIFclear-inst)对晴空 OCO-2 SIF显示出很高的精度,并且对生物群类型的偏差很小。连续的SIF数据集和派生的GPP-SIF关系可以更好地理解GPP在生物群落和气候中的空间和时间变化。本数据集为中国西南地区4天时间分辨率的日光诱导叶绿素荧光数据集。
Zhang Yao
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区8天时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区年尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国西南地区月尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
原始基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。本数据集在原始全球数据集的基础上进行区域裁剪所得
陈永喆, 冯晓明, 傅伯杰
SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国长江上游,格式为TIFF格式。
美国国家航空航天局
哨兵2号(Sentinel-2)包含两颗卫星,两颗相同的SENTINEL-2卫星同时运行,相位差180°,在平均海拔786 km的太阳同步轨道上运行。每个SENTINEL-2卫星在其轨道上的位置由双频全球导航卫星系统(GNSS)接收器测量。通过专用推进系统维持轨道精度。每颗卫星配备了最先进的多光谱成像仪(Multi Spectral Instrument ,MSI),可提供高分辨率的光学成像。分辨率为25米,覆盖波段13个(本数据经过筛选保留了常用的8个波段-2、3、4、5、6、8、8A)。可有效用于土地利用和变化检测制图、提供土地覆盖的支持、救灾支持、气候变化监测等。
顾松巍, 欧空局哥白尼数据中心
GRACE ,Gravity Recovery and Climate Experiment,由 NASA 和德国宇航中心(DLR)联合研制。提供Mascon RL06 版本的等效液态水估计的数据,数据提供商分别为美国德克萨斯大学空间研究中心 (CSR),喷气动力实验室 (JPL)和戈达德空间飞行中心 (GSFC)。空间分辨率分别为0.25°,0.5°和0.5°。对原始数据进行时间线性插值、中国区域掩膜提取以及坐标系转换后得到中国西南地区GRACE月度海量网格数据(2002-2022),以geotiff文件格式保存。其数据真实可靠,是目前GRACE用于估计陆地水储量变化的主要数据。
D. N. Wiese, D.-N. Yuan, C. Boening, F. W. Landerer, M. M. Watkins, Himanshu Save,Srinivas Bettadpur,Byron D. Tapley, Bryant D. Loomis,Denis Felikson,Terence J. Sabaka,Brooke Medley