改革开放以来,中国经济的快速发展对土地利用模式产生了深刻的影响。同时,中国又具有复杂的自然环境背景和广阔的陆地面积,其土地利用变化不仅对国家发展,还对全球环境变化产生了重要的影响。为了恢复和重建我国土地利用变化的现代过程,更好地预测、预报土地利用变化趋势,中国科学院在国家资源环境数据库基础上,以美国陆地卫星Landsat遥感影像数据作为主信息源,通过人工目视解译,建成了国家尺度1:10比例尺多时期土地利用/土地覆盖专题数据库。该数据集裁剪于2015年中国土地利用现状遥感监测数据库是以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的国家尺度1:10比例尺土地利用/土地覆盖专题数据库,精度为30米。数据采用二级分类系统,一级分为耕地、林地、草地、水域、建设用地和未利用土地6类,二级在一级类型基础上进一步分为25个类型。
徐新良
ALOS (Advanced Land Observing Satellite)是日本的对地观测卫星,于2006年发射。ALOS卫星再有三个传感器:全色遥感立体测绘仪,先进可见光与近红外辐射计-2,相控阵型L波段合成孔径雷达。ALOS-12.5米DEM数据来自于ALOS卫星相控阵型L波段合成孔径雷达(PALSAR)采集,该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。该数据的水平及垂直精度可达12.5米。
NASA
该数据集以0.05度(赤道约5公里)的空间分辨率和16天的时间分辨率提供了2014年9月至2020年7月的中国长江上游连续的全球平均日太阳诱导叶绿素荧光(SIF)数据。该产品来自于轨道碳观测站-2(OCO-2)的SIF观测,通过对OCO-2的原生SIF观测和沿OCO-2轨道的MODIS BRDF校正的七波段表面反射率进行人工神经网络(ANN)训练而产生。然后,根据MODIS反射率和土地覆盖率,将训练好的ANN模型应用于预测OCO-2的空白区域的平均每日SIF(mW/m2/nm/sr)。该框架按生物群落和16天的时间步骤进行分层。
Longlong Yu, Jiaming Wen, Christine Yao-Yun Chang, Christian Frankenberg, Ying Sun
该数据集是清华大学地球系统科学系宫鹏团队基于团队2011年以来在全球30米地表覆盖制图中获得的经验和样本库建设方面的积累,结合10米分辨率Sentinel-2全球影像的王铮存储和免费获取,开发出了世界首套30米分辨率的全球地表覆盖产品-FROM-FLC30,该产品基于2017年在《科学通报》发表的全球首套多季节样本库(涵盖2014-2015年Landsat8影像,由专家解译得到的均匀覆盖全球的多季节样本),将该样本库中样本应用于2017年获取的Sentinel-2影像,采用随机森林分类器得到全球30米地覆盖制图。2015年共包括11个一级类和23个二级类,分别为:耕地、林地、草地、灌木、湿地、水、冻土、不透水面、裸地、雪/冰、云;2017年包括10个一级类,分别为:耕地、林地、草地、灌木、湿地、水、冻土、不透水面、裸地、雪/冰
宫鹏
该数据集是清华大学地球系统科学系宫鹏团队基于团队2011年以来在全球30米地表覆盖制图中获得的经验和样本库建设方面的积累,结合10米分辨率Sentinel-2全球影像的王铮存储和免费获取,开发出了世界首套10米分辨率的全球地表覆盖产品-FROM-FLC10,该产品基于2017年在《科学通报》发表的全球首套多季节样本库(涵盖2014-2015年Landsat8影像,由专家解译得到的均匀覆盖全球的多季节样本),将该样本库中样本应用于2017年获取的Sentinel-2影像,采用随机森林分类器得到全球10米地覆盖制图,共包括10一级类,分别是:耕地、林地、草地、湿地、灌木、水体、冻土、不透水面、冰/雪
宫鹏
WorldPop 在全球和各个国家范围内,生成各种人口网格化数据产品,包括3弧秒的格网数据 (在赤道上约为100m). 人口数据生产主要方法是加权分区密度制图,该方法依赖于随机森林模型来生成预测加权层将人口数量重新分布到网格单元中。WorldPop项目为各个国家和许多地区,包括中美洲和南美洲、非洲和亚洲,提供了一个开放存取、透明记录的空间人口数据集档案,以支持发展、救灾和卫生应用。所有数据都可以从下载https://www.worldpop.org/project/list.
Andrew J. Tatem
TanDEM-X 90m DEM是德国TanDEM-X任务在2010年至2015年期间获得的全球数字高程模型(DEM)数据,2015年完成数据的采集,2016年9月完成全球DEM的制作,其范围覆盖了南北两极之间的所有陆地,精度较高,绝对高程误差约1米。其在地球科学(地质学、冰川学、海洋学、气象学、水文学)、环境研究、土地利用、植被监测、城市和基础设施规划、制图,导航,后勤,危机管理,国防和安全等反面有广泛的应用。
German Aerospace Center
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
ASTER GDEM数据由日本METI和美国NASA联合研制并免费面向公众分发。ASTER GDEM数据产品基于“先进星载热发射和反辐射计(ASTER)”数据计算生成,是目前唯一覆盖全球陆地表面的高分辨率高程影像数据。该产品空间分辨率为30m,目前有ASTER GDEM V1, ASTER GDEM V2, ASTER GDEM V3三个版本。2019年8月5日,NASA和METI共同发布了ASTER GDEM V3版本,在V2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。
NASA
中国长江上游1kmPM2.5数据集(2000-2021)是中国(中国大气污染物监测中心( CHAP ))系列长期、全覆盖、高分辨率、高质量的地面空气污染物数据集之一。它是利用人工智能的大数据(例如,地基测量、卫星遥感产品、大气再分析和模式模拟等),通过考虑空气污染的时空异质性而产生的。该数据为2000年至2021年中国长江流域每天1公里(即D1K)的地面PM2.5数据集。该数据集每天的交叉验证决定系数( CV-R2 )为0.92,均方根误差( RMSE )为10.76 µ g m - 3
伟晶
刘良云课题研发的1985-2020年地表覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年
刘良云
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
Terra和Aqua组合的中分辨率成像光谱仪(MODIS)陆地覆盖气候模拟网格(CMG)(MCD12C1)Version 6数据产品提供了空间聚合和重投影版本的平铺MCD12Q1 Version 6数据产品。国际地圈-生物圈计划(IGBP)、马里兰大学(UMD)和叶面积指数(LAI)分类方案的地图以0.05 °( 5600米)空间分辨率逐年提供。MCD12C1产品的分类值从0-16,共17种土地类型。
NASA
中国长江上游土地覆盖遥感监测数据来源于中国多时相土地覆盖现状数据库,经过多年的积累而建立的覆盖全国陆地区域的数据库。 该数据集包括1970年代末期(1980年)、1980年代末期(1990年)、1995年、2000年、2005年、2010年、2015年、2018年、2020年数据,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,在前一年数据成果基础上,通过人工目视解译生成,数据可靠、质量较高。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
资源环境科学与数据中心
科佩尼库斯全球陆地服务( CGLS )被指定为陆地服务的一个组成部分,运营一个多用途服务组件,在全球范围内提供一系列关于陆地表面状态和演变的生物地球物理产品。 CGLS-LC100 ( Dynamic Land Cover Map at 100 m Resolution )是CGLS产品组合中的新产品,提供了100 m空间分辨率的全球土地覆盖图。CGLS土地覆盖产品提供了一个初步的土地覆盖方案。除这些离散的类别外,该产品还包括所有基本土地覆盖类别的连续字段层,为土地覆盖类型提供植被/地表覆盖的比例估计。这种连续的分类方案可能比标准分类方案更好地描述异质性土地覆盖的区域,因此,可以为应用定制(例如森林监测、作物监测、生物多样性与保护、非洲环境与安全监测、气候模拟等)。 这些一致的土地覆盖图(v3.0.1)提供了整个全球范围内2015-2019年的土地覆盖图,来源于PROBA-V100m时间序列、高质量土地覆盖训练场地数据库和若干辅助数据集,历年在Level1达到80 %的精度。计划从2020年起通过使用Sentinel时间序列提供年度更新。
Marcel Buchhorn
数据是基于10米分辨率的Sentinel-2数据的2017年中国长江上游及西南地区土地覆盖图(FROM-GLC10)。数据来源于清华大学地球系统科学系宫鹏教授研究组与国内外多家单位合作发表在《科学通报》(Science Bulletin)期刊中的《有限全球样本稳定地表覆盖分类:迁移2015年的30米分辨率样本完成2017年的10米分辨率全球地表覆盖制图》,通过ArcGIS裁剪出中国长江上游及西南地区的相关数据。数据经精度检验后的总体精度达到72.76%,精度较高。高分辨率的全球地表覆盖信息,能够更好地进行环境监测,进而维护人类健康和实现联合国可持续发展目标。
宫鹏
MCD12Q1 V6产品每年提供土地覆盖类型( 2001-2020年),来自六种不同的分类方案,一般采用的是第一个数据集Land cover type1(LC_Type1)IGBP的分类体系,因为其数据类型最为丰富,一共17种土地类型;其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。它是利用MODIS Terra和Aqua反射率数据的监督分类得出的。然后对监督分类进行附加的后处理,其中包括先验知识和辅助信息,以进一步细化特定类。数据空间分辨率为500m。
NASA
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长时间序列(1981-2015)NDVI产品,版本号3g.v1。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。该产品的时间分辨率是每月两次,空间分辨率8km,数据格式为geotiff。时间跨度1981年7月至2015年12月。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将中国长江上游部分裁切出来,以便单独开展长江上游地区的研究分析。
NOAA
World Cover数据集是欧空局联合全球多家科研机构,共同制作的2020年全球10米土地覆盖产品;该数据产品分辨率为10米,是基于Sentinel-1和Sentinel-2数据进行制作,包括11中土地覆盖类别,分别为:林地、灌木、草地、耕地、建筑、荒漠、雪\冰、水体、湿地、红树林、苔藓\地衣,是在欧洲航天局WorldCover项目框架内生成,该项目是欧空局第5次地球观测网络计划(EOEP -5)的一部分。
欧空局
该数据产品是基于三十万景Landsat影像,结合现有产品自动稳定样本和目视解译样本生产获得,共包括9个一级类型,分别是:农田、森林、灌木、草地、水体、冰雪、荒地、不透水面、湿地;处理流程包括生成训练和测试样本、构建特征、检查分类和时空一致性,以及与其他产品准确性进行对比均在在GEE 平台上实施,以免于数据下载和管理;该数据集基于5463个独立参考样本,产品整体精度为79.31% ;CLCD数据集揭示了1985-2019年中国土地覆盖变化的趋势和模式:如不透水面(+148.71%)和地表水(+18.39%)的扩大,耕地(-4.85%)和草地(-3.29%)的减少,森林(+4.34%)的增加。总的来说,我们的结果反映了中国快速的城市化和一系列生态工程,揭示了在气候变化下人类活动对区域地表覆盖的影响
黄昕
本数据集是基于土壤剖面和样本汇编的机器学习方法对土壤属性进行预测,长江上游和西南地区范围的土壤属性(砂粒、粘粒、PH、体积密度、有机碳、质地等级)空间分布成图。水平空间分辨率为250m,垂直方向包括六个土层深度:0,10,30,60,100,200cm。格式为GeoTIFF,数据包含6个波段,其中第一到第六个波段依次为土壤粘粒含量在土层深度为0、10、30、60、100、200cm 的值,单位为%。
Tomislav Hengl
30米全球地表覆盖数据GlobeLand30是中国研制的30米空间分辨率全球地表覆盖数据,2014年发布GlobeLand30 2000和2010版,2020版已完成。GlobeLand30数据采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82
陈军
SoilGrids基于约150000个用于训练的土壤剖面和一堆158个基于遥感的土壤协变量(主要来自MODIS土地产品,SRTM DEM衍生物、气候图像和全球地形和岩性图)用于拟合机器学习方法的集合随机森林和梯度,在R包中实现的增强和多项式逻辑回归,对七个标准深度(0、5、15、30、60、100和200 cm)的标准数值土壤特性(有机碳、体积密度、氮、阳离子交换量、pH值、土壤质地含量和粗碎屑)进行了预测。
Tomislav Hengl
北碚站点位于重庆市北碚区虎头村的常绿阔叶林地内,依托重庆金佛山喀斯特生态系统国家野外科学观测研究站。北碚站点的地理坐标为106.319N,29.762E,海拔512.9米。桂花是该区域的主要树种,林地相对平坦。北碚站点安装有SIFSpec自动SIF测量设备,SIFSpec配备的光谱仪为QE65Pro,信噪比为1000,光谱分辨率0.38nm,采样间隔0.16nm,光谱范围640-800nm,SIFSpec系统采用了 "三明治 "测量方法采集数据,本数据集基于3FLD方法反演约760 nm处的SIF值。
汤旭光
北碚站点位于重庆市北碚区虎头村的常绿阔叶林地内,依托重庆金佛山喀斯特生态系统国家野外科学观测研究站。北碚站点的地理坐标为106.319N,29.762E,海拔512.9米。桂花是该区域的主要树种,林地相对平坦。北碚站点安装有SIFSpec自动SIF测量设备,SIFSpec配备的光谱仪为QE65Pro,信噪比为1000,光谱分辨率0.38nm,采样间隔0.16nm,光谱范围640-800nm,SIFSpec系统采用了 "三明治 "测量方法采集数据,本数据集基于3FLD方法反演约760 nm处的SIF值。
汤旭光
该数据集提供了来自欧洲气象卫星 (EUMETSAT) MetOp-A 上的全球臭氧监测实验 2 (GOME-2) 仪器的叶绿素估计值的 2 级 (L2) 太阳诱导荧光 (SIF)数据,光谱分辨率约为 0.5 nm,并且波长在 734 和 758 nm 之间。 GOME-2 以约 40 公里 x 80 公里或创纪录的 40 公里 x 40 公里的分辨率在轨道基础上覆盖约 70 至 -57 度纬度之间的全球陆地。数据为 2007 年 2 月 1 日至 2018 年 1 月 31 日期间的数据。每个文件包含每日原始和偏差调整的太阳诱导荧光、质量控制信息和辅助数据。 SIF 测量可以提供有关植被功能状态的信息,包括光利用效率和全球初级生产力,可用于全球碳循环建模和农业应用。 GOME-2 SIF 产品由于信号电平低而具有固有的噪声,并且仅经过了有限的验证。该数据集中包含 3773 个 netCDF (*.nc) 格式的数据文件。数据变量被格式化为符合 CF 元数据约定的轨迹。本数据集提供的为中国长江上游的日平均SIF数据。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
该数据集提供了中国长江上游的二级(L2)太阳诱导荧光(SIF)的叶绿素估计值,该估计值来自欧洲航天局(ESA)环境卫星(Envisat)上的Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY(SCIAMACHY)仪器,光谱分辨率约0.5纳米,波长在734-758纳米之间。提供了从2003-01-01到2012-04-08期间的数据。每个文件都包含每天的原始和偏差调整的太阳诱导荧光,以及质量控制信息和辅助数据。本数据集为740 nm处反演的SIF。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
本数据来自2022年7月-2023年6月期间在重庆市北碚区虎头村进行的观测数据,依托高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22)。植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。
汤旭光
本数据来自2022年7月-2023年6月期间在重庆市北碚区虎头村进行的观测数据,依托高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22)。叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。
汤旭光
本数据是本项目成员依据高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22),在重庆市北碚区虎头山区域进行地物波谱反射率的实地测量,在研究区域内进行优化布设共设置10个观测点,涵盖多种地物包括桂花林、草地、琵琶林和灌丛等。每次观测在上午10:00至下午16:00之间进行且无云层遮盖的天气条件下,每个观测点进行一天内观测两次,每次记录10条波谱曲线,观测周期试天气情况而定,最终汇总数据。
汤旭光
该数据集提供了描述陆地表面的地图,分为22个类别,这些类别已经使用联合国粮农组织( FAO)的土地覆盖分类系统(LCCS)定义。除了土地覆盖(LC)地图外,还制作了四个质量标志,以记录分类和变化检测的可靠性。 为了保证连续性,这些土地覆盖图与欧洲空间局(ESA)气候变化倡议(CCI)制作的1990年代至2015年的全球年度LC图系列一致,也可在ESA CCI LC Viewer上获取。为了产生这个数据集,整个中分辨率成像光谱仪(MERIS)从2003年到2012年的全分辨率和低分辨率档案首先被分类成一个独特的10年基线LC图。然后利用(i) 1992-1999年的高级甚高分辨率辐射计(AVHRR)时间序列、(ii) 1998-2012年的SPOT-vegetation (SPOT-VGT)时间序列和(iii) 2013年的PROBA-vegetation (PROBA-V)和Sentinel-3 OLCI (S3OLCI)时间序列的变化来反演和更新。 除了气候建模社区之外,该数据集的长期一致性、年度更新和全球范围内的高度专题细节使其在土地核算、森林监测和荒漠化等众多应用以及科学研究方面具有吸引力。
欧空局
MERRA-2 是 NASA 全球建模和同化办公室 (GMAO) 使用戈达德地球观测系统模型 (GEOS) 版本 5.12.4 制作的卫星时代全球大气再分析的最新版本数据集。随着气象同化的增强,MERRA-2 朝着 GMAO 的地球系统再分析目标迈出了重要的一步。MERRA-2 是第一个长期的全球再分析,用于同化基于空间的气溶胶观测并代表它们与气候系统中其他物理过程的相互作用。本数据集是MERRA-2中平均时间为每小时的二维数据收集,涵盖了1980年到2022年的时期,空间分辨率为0.5°*0.625°。该集合包含了中国长江上游的地表诊断数据,例如基流通量、地表温度、径流、表层土壤湿度、根区土壤湿度、表层水、根区层水和六层土壤温度等。数据字段使用从 00:30 UTC 开始的一小时中心时间进行时间标记,例如:00:30、01:30、...、23:30 UTC。
NASA
总初级生产力(Gross primary productivity, GPP)是指单位时间内植物通过光合作用吸收CO2过程固定的有机碳量。中国长江上游MODIS植被总初级生产力产品数据集是基于MOD17A2H产品(版本006)裁剪拼接得到的。该数据产品提供了估算的GPP数值,可以作为数据模型的输入,计算陆地能源、碳、水循环过程和植被的生物地球化学。时间范围为2000年2月18日到2022年8月30日,空间分辨率为500m,时间分辨率为8天累积综合值,数据坐标系为WGS84地理坐标系。
美国国家航空航天局
植被净初级生产力(NPP)是植物光合作用有机物质的净创造,是表征陆地生态过程的关键参数,已成为理解地表碳循环过程不可缺少的部分。中国长江上游500mMODIS植被净初级生产力产品数据集基于MOD17A3HGF产品(版本6.1)裁剪拼接得到的。该产品改进并填补了MOD17的空白,根据每个像素的质量控制(QC)标签,清理了8天叶面积指数和光合有效辐射分数(LAI/FPAR)的低质量输入,已广泛应用于土地利用评价、区域生态规划、植被长势监测等方面。时间范围为2001年到2021年,空间分辨率为500m,时间分辨率为每年,数据坐标系为WGS84地理坐标系。
美国国家航空航天局