LPDR是利用τ-ω模型,从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。
Jinyang Du, John S. Kimball, Lucas A. Jones
数据是基于10米分辨率的Sentinel-2数据的2017年全球土地覆盖图(FROM-GLC10)。数据来源于清华大学地球系统科学系宫鹏教授研究组与国内外多家单位合作发表在《科学通报》(Science Bulletin)期刊中的《有限全球样本稳定地表覆盖分类:迁移2015年的30米分辨率样本完成2017年的10米分辨率全球地表覆盖制图》。数据经精度检验后的总体精度达到72.76%,精度较高。高分辨率的全球地表覆盖信息,能够更好地进行环境监测,进而维护人类健康和实现联合国可持续发展目标。
宫鹏
全球 1km 人口数量格网数据集由2000年、2005年、2010年、2015年和2020年的人口估计数(每平方公里人数)组成,与国家人口普查和人口登记册一致。利用约1350万个国家和次国家行政单位的比例分配网格算法,将人口数量分配到30弧秒的网格单元。数据文件被制作成30弧秒(赤道上约1公里)分辨率的人口数量栅格数据。数据集的基本输入是人口普查表和相应的地理界线。数据集目的是提供一个空间分类的人口层,与来自社会、经济和地球科学学科以及遥感的数据集兼容。它提供了全球一致和空间明确的数据,用于研究、决策和交流。
Center for International Earth Science Information Network - CIESIN - Columbia University
全球 1km 人口数量格网数据集由2000年、2005年、2010年、2015年和2020年的人口估计数(每个像素的人数)组成,与国家人口普查和人口登记册一致。利用约1350万个国家和次国家行政单位的比例分配网格算法,将人口数量分配到30弧秒的网格单元。数据文件被制作成30弧秒(赤道上约1公里)分辨率的人口数量栅格数据。数据集的基本输入是人口普查表和相应的地理界线。数据集目的是提供一个空间分类的人口层,与来自社会、经济和地球科学学科以及遥感的数据集兼容。它提供了全球一致和空间明确的数据,用于研究、决策和交流。
Center for International Earth Science Information Network - CIESIN - Columbia University
调整后的人口计数与《联合国世界人口前景》国家总数2015年修订版相匹配,第11版包括与国家人口普查和人口登记的相对空间分布相一致的人类人口估计数(每像素的人数),但调整后与联合国《世界人口前景》国家总数2015年修订版2000、2005、2010、2015和2020年的数据相匹配。利用约1350万个国家和次国家行政单位的比例分配网格算法,将人口数量分配到30弧秒的网格单元。数据文件被制作成30弧秒(赤道上约1公里)分辨率的全球栅格数据。该数据集的基本输入是人口普查表和相应的地理边界。该数据集提供了一个与社会、经济、地球科学学科和遥感数据集兼容的空间分类人口层。它提供全球一致和空间明确的数据,用于研究、决策和通信。
Center for International Earth Science Information Network - CIESIN - Columbia University
全球 1km 根据联合国世界人口展望调整后的人口密度格网数据集,包括基于与国家人口普查和人口登记相对空间分布相一致的计数的人口密度估计值(每平方公里人口数),但经过调整以匹配2000、2005、2011、2015和2020年《联合国世界人口展望2015年修订版》国家总数。使用比例分配网格算法,利用约1350万个国家和地方行政单位,将联合国世界人口展望调整后的人口数分配到30弧秒网格单元。密度栅格是通过将联合国WPP调整的给定目标年人口计数栅格除以陆地面积栅格而创建的。数据文件为30弧秒(赤道约1公里)分辨率。该数据集提供基于调整后匹配联合国国家总数与国家人口普查和人口登记册,且相对空间分布相一致的计数,包括2000年、2005年、2010年、2015年和2020年的人口密度估计数。
Center for International Earth Science Information Network - CIESIN - Columbia University
经济活动对人类的生存和发展至关重要。在社会组织和秩序的推动下,人类利用劳动和其他生产资源来交换商品和服务,以创造、转化和实现经济价值。一个国家或地区的经济产出是其在一定时期内创造的经济价值的积累;其中,国内生产总值(GDP)是全球最普遍的指标。该数据集采用自上而下的方法,根据校准后的夜间光照数据,从修订后的实际增长角度来计算1992-2019年间全球1km×1km网格化修订后的真实GDP。网格化数据的范围并未涉及全球所有国家(175个国家或地区的GDP数据)。因此,超出我们研究范围的区域值设置为0。官方GDP数据来自宾夕法尼亚大学世界数据库。此外,将所有图像的投影坐标系设置为Mollweide坐标。
Yu Liu, MingGao
GLASS - GLC数据集是以5公里分辨率从1982年到2015年全球土地覆盖34年长期动态的首次记录。它使用最新版本的GLASS (全球陆地卫星) CDRs (气候数据记录)构建,并在Google Earth Engine ( GEE )平台上生成。包括农田、森林、草地、灌丛、苔原、荒地、雪/冰7类的34年平均总体精度为82.81 %。 年度地表覆盖图( 5 km )以Geo TIFF文件格式呈现,以"GLASS-GLC_7classes_year "形式命名,采用WGS 84投影。
Liu Han
该数据集是对国际卫星陆面气候学(ISLSCP)倡议II数据收集的贡献,在0.25 °、0.5 °和1 °三种空间分辨率和两种不同的分类方案下提供。每个空间分辨率都有一个主要的土地覆盖类型分类层,SiB (简单生物圈)分类方案从0到15,IGBP分类方案从1到17。对于使用的每种分类方案,都有对应图层提供每个单元格中每种土地覆盖类型的百分比,从0到100。该数据集代表1992年4月至3月期间出现的土地覆盖类型。因此,时间分辨率为一年。
Tom Loveland
该数据集包含从美国国家航空航天局(NASA)Aqua卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器生成的卫星检索的地球物理参数文件。地球物理参数包括日空气表面温度、部分开放水域覆盖估计值、植被光学深度、表面体积土壤湿度和大气总柱可降水蒸气。全球检索是在非沉淀,非雪和非冰覆盖条件下的土地上得出的。土壤水分的空间分辨率为25KM,覆盖全球,时间分辨率为1天。
Jinyang Du
LPDR是利用τ-ω模型,从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。
Jinyang Du, John S. Kimball, Lucas A. Jones
这种增强的3级(L3)土壤水分产品提供了土壤湿度主动被动(SMAP)辐射计检索的全球陆地表面状况每日估计值的组合。本产品是 SMAP 2 级 (L2) 土壤湿度的每日复合物,该土壤水分源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,一个方位角等积投影。
P. O’neill
SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国西南地区,格式为TIFF格式。
美国国家航空航天局
The Global Land Evaporation Amsterdam Model(GLEAM)是一套根据卫星观测分别估算陆地蒸发的不同组成部分的算法。GLEAM 中的 Priestley 和 Taylor 方程根据对地表净辐射和近地表气温的观测来计算蒸散发。该产品的时间分辨率是每天,空间分辨率0.25° x 0.25°,数据格式为netCDF。时间跨度1980-2021。该数据集为合理分配区域水资源提供科学依据。
ir. Akash Koppa
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为西南地区。
Wouter Dorigo
LandScan Global 采用结合了地理空间科学、遥感技术和机器学习算法的创新方法,是可用的代表环境(24 小时平均值)人口的最高分辨率全球人口分布数据。 LandScan Global 算法是 R&D 100 奖得主,它使用空间数据、高分辨率图像开发和多变量 dasymetric 建模方法来分解行政边界内的人口普查计数。由于没有单一的人口分布模型可以解释空间数据可用性、质量、规模和准确性的差异以及文化定居实践的差异,LandScan 人口分布模型是为匹配每个国家的数据条件和地理性质而量身定制的和地区。通过对环境人口进行建模,LandScan Global 在白天和黑夜的整个过程中捕获人们的全部潜在活动空间,而不仅仅是住宅位置。
Oak Ridge National Laboratory
我们应用基于卫星遥感的蒸散发(ET)算法评估了1983 - 2006年全球陆地ET。该算法使用改进的Penman‐Monteith方法量化冠层蒸腾和土壤蒸发,通过归一化植被差异指数(NDVI)确定生物群落特异性冠层电导,并使用Priestley‐Taylor方法量化开放水域蒸发量。这些算法通过先进的非常高分辨率辐射计(AVHRR) GIMMS NDVI、NCEP/NCAR再分析(NNR)每日地表气象和NASA/GEWEX地表辐射预算发布版本−3.0太阳辐射输入在全球范围内应用。我们使用34个FLUXNET塔站点的观测数据对基于NDVI的冠层电导模型进行参数化,然后使用另外48个独立通量塔的测量数据验证全球ET算法。由现场气象测量和从粗分辨率NNR气象再分析插值得到的气象数据驱动的两组塔级月蒸散发估算结果一致(均方根误差(RMSE) = 13.0-15.3 mm -1;R²= 0.80-0.84),利用全球代表性土地覆盖类型观测到的塔架通量。全球ET结果捕捉到了全球尺度上观测到的时空变化,并进行了比较(RMSE = 186.3 mm yr−1;R2= 0.80),利用覆盖全球植被面积61%的261个盆地的流域尺度水平衡计算得出ET。该研究的结果提供了一个相对长期的全球ET记录,具有很好的量化精度,可用于评估ET气候、陆地水、能源收支和长期水循环变化。
Ke Zhang, John Kimball
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。
张永强
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
卢麾,, 姚盼盼, 赵天杰, 武胜利, 施建成