LPDR是利用τ-ω模型,从美国国家航空航天局(美国航空航天局) Aqua 卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和 JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器在H和V偏振下X波段(10.7 GHz)获得的TB中计算VOD。该数据以25 km空间分辨率提供了长期(2002年6月至2021年12月)的全球关键环境观测记录,时间分辨率为1天,数据格式为EASE_Grid。
Jinyang Du, John S. Kimball, Lucas A. Jones
中国西南地区1kmPM2.5数据集(2000-2021)是中国(中国大气污染物监测中心( CHAP ))系列长期、全覆盖、高分辨率、高质量的地面空气污染物数据集之一。它是利用人工智能的大数据(例如,地基测量、卫星遥感产品、大气再分析和模式模拟等),通过考虑空气污染的时空异质性而产生的。该数据为2000年至2021年中国西南地区每天1公里(即D1K)的地面PM2.5数据集。该数据集每天的交叉验证决定系数( CV-R2 )为0.92,均方根误差( RMSE )为10.76 µ g m - 3
伟晶
这种增强的3级(L3)土壤水分产品提供了土壤湿度主动被动(SMAP)辐射计检索的全球陆地表面状况每日估计值的组合。本产品是 SMAP 2 级 (L2) 土壤湿度的每日复合物,该土壤水分源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,一个方位角等积投影。
P. O’neill
卫星检索到的太阳诱导叶绿素荧光(SIF)显示出监测陆地生态系统光合活动的巨大潜力。然而,一些问题,包括网格化数据集的空间和时间分辨率低以及单个检索的高不确定性,限制了SIF的应用。此外,测量足迹的不一致也阻碍了涡流协方差(EC)磁通量塔的总初级生产(GPP)与卫星检索的SIF之间的直接比较。该数据集是通过训练具有中分辨率成像光谱仪表面反射率的神经网络(NN)和轨道碳观测站2(OCO-2)的表面反射因子,生成的全球空间连续的SIF数据集。晴空瞬时CSIF(CSIFclear-inst)对晴空 OCO-2 SIF显示出很高的精度,并且对生物群类型的偏差很小。连续的SIF数据集和派生的GPP-SIF关系可以更好地理解GPP在生物群落和气候中的空间和时间变化。本数据集为中国长江上游4天时间分辨率的日光诱导叶绿素荧光数据集。
Zhang Yao
SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国西南地区,格式为TIFF格式。
美国国家航空航天局
本数据来自2020年10月13日-30日在重庆市北碚区使用DL1000W仪器测量所得。北碚红外测温仪器安装基本情况:北碚红外测温仪器安装下垫面有3种类型,分别为水域,水泥地,棉花,安装地点均在柑研所及其附近。水域(共3个探头)安装时间为2020年10月13日,当天安装好之后即开机测量数据;水泥地(共3个探头)安装时间为2020年10月14日,当天安装好之后即开机测量数据;其中编号为“水泥#中间”的探头为同步当天架设; 棉花地(共3个探头)安装时间为2020年10月18日,当天安装好之后即开机测量数据。
黄雅君
本数据来自2020年10月18日、19日在重庆市北碚区槽上、柑橘研究所和虎头村三个观测站使用LAI-2200植物冠层分析仪测量的数据。地面观测试验是在各遥感实验站常规观测基础上,开展的无人机和有人机过境时刻的地面连续观测和加密观测。地面测量点的选择,既要地物具有代表性,又要满足地物类型符合均一性的特征,因此在无人机飞行区域内择取满足4×4 m大小内地物类型均一的区域作为地面测量点。由于区域内大部分为热带或亚热带混合林,树木高大,林中情况复杂,徒步进入比较困难,因此主要选择容易到达的地点进行测量。测量地点主要分布在公路沿线,包含林地、草地、耕地等类型,其中在柑研所区域,选择了大量覆盖度不同的柑桔园、菜园作为测量点。
马明国
北碚站点位于重庆市北碚区虎头村的常绿阔叶林地内,依托重庆金佛山喀斯特生态系统国家野外科学观测研究站。北碚站点的地理坐标为106.319N,29.762E,海拔512.9米。桂花是该区域的主要树种,林地相对平坦。北碚站点安装有SIFSpec自动SIF测量设备,SIFSpec配备的光谱仪为QE65Pro,信噪比为1000,光谱分辨率0.38nm,采样间隔0.16nm,光谱范围640-800nm,SIFSpec系统采用了 "三明治 "测量方法采集数据,本数据集基于3FLD方法反演约760 nm处的SIF值。
汤旭光
北碚站点位于重庆市北碚区虎头村的常绿阔叶林地内,依托重庆金佛山喀斯特生态系统国家野外科学观测研究站。北碚站点的地理坐标为106.319N,29.762E,海拔512.9米。桂花是该区域的主要树种,林地相对平坦。北碚站点安装有SIFSpec自动SIF测量设备,SIFSpec配备的光谱仪为QE65Pro,信噪比为1000,光谱分辨率0.38nm,采样间隔0.16nm,光谱范围640-800nm,SIFSpec系统采用了 "三明治 "测量方法采集数据,本数据集基于3FLD方法反演约760 nm处的SIF值。
汤旭光
该数据集提供了来自欧洲气象卫星 (EUMETSAT) MetOp-A 上的全球臭氧监测实验 2 (GOME-2) 仪器的叶绿素估计值的 2 级 (L2) 太阳诱导荧光 (SIF)数据,光谱分辨率约为 0.5 nm,并且波长在 734 和 758 nm 之间。 GOME-2 以约 40 公里 x 80 公里或创纪录的 40 公里 x 40 公里的分辨率在轨道基础上覆盖约 70 至 -57 度纬度之间的全球陆地。数据为 2007 年 2 月 1 日至 2018 年 1 月 31 日期间的数据。每个文件包含每日原始和偏差调整的太阳诱导荧光、质量控制信息和辅助数据。 SIF 测量可以提供有关植被功能状态的信息,包括光利用效率和全球初级生产力,可用于全球碳循环建模和农业应用。 GOME-2 SIF 产品由于信号电平低而具有固有的噪声,并且仅经过了有限的验证。该数据集中包含 3773 个 netCDF (*.nc) 格式的数据文件。数据变量被格式化为符合 CF 元数据约定的轨迹。本数据集提供的为中国长江上游的日平均SIF数据。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
该数据集提供了中国长江上游的二级(L2)太阳诱导荧光(SIF)的叶绿素估计值,该估计值来自欧洲航天局(ESA)环境卫星(Envisat)上的Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY(SCIAMACHY)仪器,光谱分辨率约0.5纳米,波长在734-758纳米之间。提供了从2003-01-01到2012-04-08期间的数据。每个文件都包含每天的原始和偏差调整的太阳诱导荧光,以及质量控制信息和辅助数据。本数据集为740 nm处反演的SIF。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
该数据集以0.05度(赤道约5公里)的空间分辨率和16天的时间分辨率提供了2014年9月至2020年7月的中国西南地区连续的全球平均日太阳诱导叶绿素荧光(SIF)数据。该产品来自于轨道碳观测站-2(OCO-2)的SIF观测,通过对OCO-2的原生SIF观测和沿OCO-2轨道的MODIS BRDF校正的七波段表面反射率进行人工神经网络(ANN)训练而产生。然后,根据MODIS反射率和土地覆盖率,将训练好的ANN模型应用于预测OCO-2的空白区域的平均每日SIF(mW/m2/nm/sr)。该框架按生物群落和16天的时间步骤进行分层。
Longlong Yu, Jiaming Wen, Christine Yao-Yun Chang, Christian Frankenberg, Ying Sun
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
MCD15A3H 版本 6.1 中分辨率成像光谱仪 (MODIS) 4 级、光合有效辐射 (FPAR) 的组合分数 (FPAR) 和叶面积指数 (LAI) 产品是一个 4 天的复合数据集,像素大小为 500 米。 该算法在 4 天内从位于 NASA 的 Terra 和 Aqua 卫星上的 MODIS 传感器的所有采集中选择可用的最佳像素。LAI 定义为阔叶树冠中每单位面积的单侧绿叶面积和针叶树冠中每单位面积的总针叶表面积的二分之一。
NASA
The Global Land Evaporation Amsterdam Model(GLEAM)是一套根据卫星观测分别估算陆地蒸发的不同组成部分的算法。GLEAM 中的 Priestley 和 Taylor 方程根据对地表净辐射和近地表气温的观测来计算蒸散发。该产品的时间分辨率是每天,空间分辨率0.25° x 0.25°,数据格式为netCDF。时间跨度1980-2021。该数据集为合理分配区域水资源提供科学依据。
ir. Akash Koppa
NASA全球陆地数据同化系统(GLDAS)的目标是通过生成摄取卫星和地基的最佳地表状态和通量场观测数据产品,使用先进的陆地表面建模和数据同化技术。GLDAS驱动多个离线的(不耦合的)对大气)的陆面模型,集成了大量的观测数据,并在全球范围内以高分辨率(2.5°到1公里)执行土地信息系统(LIS)。该产品的时间分辨率是三小时,空间分辨率0.25° x 0.25°,数据格式为tif。时间跨度2000-01-01至2022-07-01。该数据集为合理分配区域水资源提供科学依据。
NASA
本数据来自2022年7月-2023年6月期间在重庆市北碚区虎头村进行的观测数据,依托高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22)。植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。
汤旭光
本数据来自2022年7月-2023年6月期间在重庆市北碚区虎头村进行的观测数据,依托高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22)。叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。
汤旭光
本数据是本项目成员依据高分辨率对地观测国家重点项目(21-Y20B01-9001-19/22),在重庆市北碚区虎头山区域进行地物波谱反射率的实地测量,在研究区域内进行优化布设共设置10个观测点,涵盖多种地物包括桂花林、草地、琵琶林和灌丛等。每次观测在上午10:00至下午16:00之间进行且无云层遮盖的天气条件下,每个观测点进行一天内观测两次,每次记录10条波谱曲线,观测周期试天气情况而定,最终汇总数据。
汤旭光
版本10r是数据集的当前版本。OCO-2 SIF Lite文件包含偏差校正的太阳诱导叶绿素荧光以及聚合为每日文件的其他选择字段。轨道碳观测站是美国宇航局的第一个任务,旨在收集基于空间的大气二氧化碳测量值,其精度、分辨率和覆盖范围是表征控制其在大气中积累过程所需的精度、分辨率和覆盖范围。 OCO-2 项目使用携带单个仪器的 LEOStar-2 航天器。它包含三个高分辨率光谱仪,可同时测量 1.61 和 2.06 微米附近的近红外 CO2 和 0.76 微米的分子氧 (O2) A 波段中的反射阳光。该集合包括IMAP-DOAS预处理器的输出,该预处理器用于筛选官方XCO2产品以及从0.76微米O2 A波段检索太阳诱导荧光。IMAP-DOAS 预处理器与 ABO2 云屏幕一样,在操作 OCO-2 处理管道中实现。
NASA