WorldClim 2.1 月尺度降水数据集 (1960-2018)由高空间分辨率的全天天气和气候数据数据库WorldClim提供。降水为每月的累计量,单位为mm。时间覆盖范围为1960到2018年,空间分辨率约为21 km,时间分辨率为月。这些数据由东安格利亚大学气候研究组从CRU-TS-4.03降级而来,使用WorldClim 2.1进行偏差校正得到。CRU-TS-4.03为全球陆地地区气象站的月度观测数据中构建的最新网格化气候数据集。
Philip Jones
全球降水气候数据集(GPCP)由NASA戈达德太空飞行中心制作,数据结合了特殊传感器微波成像仪(SSM/I)项目和散射算法、GOES降水指数(GPI)、输出长波降水指数(OPI)、雨量计和NOAA极轨卫星上的TOVS探测仪的降水估计等数据。GPCP日降水数据集提供全球经纬度1度网格上的日降水积累,从1996年10月开始,一直持续到现在(有一些处理延迟)。 它依赖于GPCP月度产品的月度总降雨量,主要使用地球静止红外卫星图像来确定日降雨率。数据空间分辨率为1°,时间分辨率为天。
George. J. Huffman
GRACE ,Gravity Recovery and Climate Experiment,由 NASA 和德国宇航中心(DLR)联合研制。提供Mascon RL06 版本的等效液态水估计的数据,数据提供商分别为美国德克萨斯大学空间研究中心 (CSR),喷气动力实验室 (JPL)和戈达德空间飞行中心 (GSFC)。空间分辨率分别为0.25°,0.5°和0.5°。对原始数据进行时间线性插值、中国区域掩膜提取以及坐标系转换后得到长江中上游地区GRACE月度海量网格数据(2002-2022),以geotiff文件格式保存。其数据真实可靠,是目前GRACE用于估计陆地水储量变化的主要数据。
D. N. Wiese, D.-N. Yuan, C. Boening, F. W. Landerer, M. M. Watkins, Himanshu Save,Srinivas Bettadpur,Byron D. Tapley, Bryant D. Loomis,Denis Felikson,Terence J. Sabaka,Brooke Medley
LandScan Global 采用结合了地理空间科学、遥感技术和机器学习算法的创新方法,是可用的代表环境(24 小时平均值)人口的最高分辨率全球人口分布数据。 LandScan Global 算法是 R&D 100 奖得主,它使用空间数据、高分辨率图像开发和多变量 dasymetric 建模方法来分解行政边界内的人口普查计数。由于没有单一的人口分布模型可以解释空间数据可用性、质量、规模和准确性的差异以及文化定居实践的差异,LandScan 人口分布模型是为匹配每个国家的数据条件和地理性质而量身定制的和地区。通过对环境人口进行建模,LandScan Global 在白天和黑夜的整个过程中捕获人们的全部潜在活动空间,而不仅仅是住宅位置。
Oak Ridge National Laboratory
MERRA-2 是 NASA 全球建模和同化办公室 (GMAO) 使用戈达德地球观测系统模型 (GEOS) 版本 5.12.4 制作的卫星时代全球大气再分析的最新版本数据集。随着气象同化的增强,MERRA-2 朝着 GMAO 的地球系统再分析目标迈出了重要的一步。MERRA-2 是第一个长期的全球再分析,用于同化基于空间的气溶胶观测并代表它们与气候系统中其他物理过程的相互作用。本数据集是MERRA-2中平均时间为每小时的二维数据收集,涵盖了1980年到2022年的时期,空间分辨率为0.5°*0.625°。该集合包含了中国长江上游的地表诊断数据,例如基流通量、地表温度、径流、表层土壤湿度、根区土壤湿度、表层水、根区层水和六层土壤温度等。数据字段使用从 00:30 UTC 开始的一小时中心时间进行时间标记,例如:00:30、01:30、...、23:30 UTC。
NASA
我们应用基于卫星遥感的蒸散发(ET)算法评估了1983 - 2006年全球陆地ET。该算法使用改进的Penman‐Monteith方法量化冠层蒸腾和土壤蒸发,通过归一化植被差异指数(NDVI)确定生物群落特异性冠层电导,并使用Priestley‐Taylor方法量化开放水域蒸发量。这些算法通过先进的非常高分辨率辐射计(AVHRR) GIMMS NDVI、NCEP/NCAR再分析(NNR)每日地表气象和NASA/GEWEX地表辐射预算发布版本−3.0太阳辐射输入在全球范围内应用。我们使用34个FLUXNET塔站点的观测数据对基于NDVI的冠层电导模型进行参数化,然后使用另外48个独立通量塔的测量数据验证全球ET算法。由现场气象测量和从粗分辨率NNR气象再分析插值得到的气象数据驱动的两组塔级月蒸散发估算结果一致(均方根误差(RMSE) = 13.0-15.3 mm -1;R²= 0.80-0.84),利用全球代表性土地覆盖类型观测到的塔架通量。全球ET结果捕捉到了全球尺度上观测到的时空变化,并进行了比较(RMSE = 186.3 mm yr−1;R2= 0.80),利用覆盖全球植被面积61%的261个盆地的流域尺度水平衡计算得出ET。该研究的结果提供了一个相对长期的全球ET记录,具有很好的量化精度,可用于评估ET气候、陆地水、能源收支和长期水循环变化。
Ke Zhang, John Kimball
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。
张永强
MOD16A2 Version 6蒸散发/潜热通量产品是一个8天合成数据集,以500米(m)像素分辨率生成。用于MOD16数据产品收集的算法基于Penman-Monteith方程的逻辑,其中包括每日气象再分析数据的输入以及中分辨率成像光谱仪(MODIS)遥感数据产品,如植被特性动态、反照率和土地覆盖。MOD16A2产品提供了复合蒸散(ET)层、潜热通量(LE)层、电位ET (PET)层和电位LE (PLE)层以及质量控制层。每个MOD16A2颗粒还可使用两个低分辨率浏览图像ET和LE。两个蒸散层(ET和PET)的像元值是综合周期内所有8天的像元值之和,两个潜热层(LE和PLE)的像元值是综合周期内所有8天的像元值平均值。注意,每年的最后一次采集周期是5或6天的综合周期,具体取决于年份。
NASA, Steve Running
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。
阳坤
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾