数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取西南地区土壤水分数据。
毛克彪
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。本数据集在全国数据集的基础上,裁切出中国西南地区数据进行共享。
宋沛林, 张永强
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
卢麾,, 姚盼盼, 赵天杰, 武胜利, 施建成
总初级生产力(Gross primary productivity, GPP)是指单位时间内植物通过光合作用吸收CO2过程固定的有机碳量。中国长江上游MODIS植被总初级生产力产品数据集是基于MOD17A2H产品(版本006)裁剪拼接得到的。该数据产品提供了估算的GPP数值,可以作为数据模型的输入,计算陆地能源、碳、水循环过程和植被的生物地球化学。时间范围为2000年2月18日到2022年8月30日,空间分辨率为500m,时间分辨率为8天累积综合值,数据坐标系为WGS84地理坐标系。
美国国家航空航天局
植被净初级生产力(NPP)是植物光合作用有机物质的净创造,是表征陆地生态过程的关键参数,已成为理解地表碳循环过程不可缺少的部分。中国长江上游500mMODIS植被净初级生产力产品数据集基于MOD17A3HGF产品(版本6.1)裁剪拼接得到的。该产品改进并填补了MOD17的空白,根据每个像素的质量控制(QC)标签,清理了8天叶面积指数和光合有效辐射分数(LAI/FPAR)的低质量输入,已广泛应用于土地利用评价、区域生态规划、植被长势监测等方面。时间范围为2001年到2021年,空间分辨率为500m,时间分辨率为每年,数据坐标系为WGS84地理坐标系。
美国国家航空航天局
该数据集包括:射出长波辐射(OLR),地表下行长波辐射(DLR),地面入射太阳辐射(SSI),地表上行长波辐射(ULR)。所有数据均来自于风云卫星遥感数据服务网。其中,卫星 OLR 产品被广泛应用于气候模式输出参量即模式性能的评估。在中国气象界,OLR 资料被用于南海地区夏季风的监测,和西太平洋副高位置的确定。国际上 OLR 资料用于 ITCZ、ENSO 的监测和分析。卫星 DLR 产品应用于气候模式、陆面模式、海洋大气环流模式,作为输入参量或模式性能评估。SSI为入射到地表的太阳辐射通量密度(单位:瓦/平方米),具体指地球表面 水平面上单位时间单位面积接收到的总的太阳辐射能,包括直接太阳辐射和漫射辐射。为天气、气候模式及陆面模式提供输入及验证,为太阳能工业及森林草场火险监测预警提供地表太阳辐射分布信息。卫星 ULR 产品应用于气候模式、陆面模式、海洋大气环流模式,作为输入参量或模式性能评估,也用于地震诊断。
吴晓
中国西南地区(四川,重庆,云南,贵州)Landsat8地表反射率数据集的数据集是基于 Landsat 8 OLI/TIRS 传感器得到的,该数据的表面反射率已经经过了大气校正。这些图像的波段包含 了5 个可见和近红外 (VNIR) 波段和 2 个短波红外 (SWIR) 波段,处理为正射校正表面反射率;以及两个热红外 (TIR) 波段,处理为正射校正亮温。数据时间分辨率为月尺度,并经过了去云处理。时间范围为2013年3月到2021年12月,数据坐标系为WGS84地理坐标系。
马明国
NASA全球陆地数据同化系统(GLDAS)的目标是通过生成摄取卫星和地基的最佳地表状态和通量场观测数据产品,使用先进的陆地表面建模和数据同化技术。GLDAS驱动多个离线的(不耦合的)对大气)的陆面模型,集成了大量的观测数据,并在全球范围内以高分辨率(2.5°到1公里)执行土地信息系统(LIS)。该产品的时间分辨率是三小时,空间分辨率0.25° x 0.25°,数据格式为tif。时间跨度2000-01-01至2022-07-01。该数据集为合理分配区域水资源提供科学依据。
NASA
MERRA-2是从1980年开始的NASA大气再分析。它取代了最初的MERRA再分析使用升级版的Goddard地球观测系统模型,版本5 (GEOS-5)数据同化系统。MERRA-2包括对全局统计插值(GSI)分析方案。该产品的时间分辨率是一小时,空间分辨率0.5° x 0.625°,数据格式为netCDF。时间跨度1980-01-01 至 2022-09-01。该数据集为合理分配区域水资源提供科学依据。
NASA
MERRA-2是从1980年开始的NASA大气再分析。它取代了最初的MERRA再分析使用升级版的Goddard地球观测系统模型,版本5 (GEOS-5)数据同化系统。MERRA-2包括对全局统计插值(GSI)分析方案。该产品的时间分辨率是一小时,空间分辨率0.5° x 0.625°,数据格式为netCDF。时间跨度1980-01-01 至 2022-09-01。该数据集为合理分配区域水资源提供科学依据。
NASA