地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。本数据集在全国数据集的基础上,裁切出中国西南地区数据进行共享。
宋沛林, 张永强
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为中国长江上游地区。
Wouter Dorigo
GlobeLand30数据研制所使用的分类影像主要是30米多光谱影像,包括美国陆地资源卫星(Landsat)的TM5、ETM+、OLI多光谱影像和中国环境减灾卫星(HJ-1)多光谱影像,2020版数据还使用了16米分辨率高分一号(GF-1)多光谱影像。它采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82。
陈军
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
1985-2020年土地覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年。
刘良云
作为农林生产、土地政策、城市建设、抵御洪涝、火灾防范和传染病传播模拟等方面的重要基础数据,GLASS-GLC也将服务于生态和资源环境的评估、管理和决策,为联合国可持续发展目标的实现提供支持。5kmGLASS土地覆盖数据集是从1982年到2015年土地覆盖长期动态的首次记录。它使用最新版本的GLASS (全球陆地卫星) CDRs (气候数据记录)构建,并在Google Earth Engine ( GEE )平台上生成。包括农田、森林、草地、灌丛、苔原、荒地、雪/冰7类的34年平均总体精度为82.81 %。
Liu Han
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取长江上游地区土壤水分数据。
毛克彪
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
卢麾, 姚盼盼, 赵天杰, 武胜利, 施建成
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。
阳坤
ASTER GDEM数据由日本METI和美国NASA联合研制并免费面向公众分发。ASTER GDEM数据产品基于“先进星载热发射和反辐射计(ASTER)”数据计算生成,是目前唯一覆盖全球陆地表面的高分辨率高程影像数据。该产品空间分辨率为30m,目前有ASTER GDEM V1, ASTER GDEM V2, ASTER GDEM V3三个版本。2019年8月5日,NASA和METI共同发布了ASTER GDEM V3版本,在V2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。
NASA
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
中国长江上游1kmPM2.5数据集(2000-2021)是中国(中国大气污染物监测中心( CHAP ))系列长期、全覆盖、高分辨率、高质量的地面空气污染物数据集之一。它是利用人工智能的大数据(例如,地基测量、卫星遥感产品、大气再分析和模式模拟等),通过考虑空气污染的时空异质性而产生的。该数据为2000年至2021年中国长江流域每天1公里(即D1K)的地面PM2.5数据集。该数据集每天的交叉验证决定系数( CV-R2 )为0.92,均方根误差( RMSE )为10.76 µ g m - 3
伟晶
刘良云课题研发的1985-2020年地表覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年
刘良云
World Cover数据集是欧空局联合全球多家科研机构,共同制作的2020年全球10米土地覆盖产品;该数据产品分辨率为10米,是基于Sentinel-1和Sentinel-2数据进行制作,包括11中土地覆盖类别,分别为:林地、灌木、草地、耕地、建筑、荒漠、雪\冰、水体、湿地、红树林、苔藓\地衣,是在欧洲航天局WorldCover项目框架内生成,该项目是欧空局第5次地球观测网络计划(EOEP -5)的一部分。
欧空局
30米全球地表覆盖数据GlobeLand30是中国研制的30米空间分辨率全球地表覆盖数据,2014年发布GlobeLand30 2000和2010版,2020版已完成。GlobeLand30数据采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82
陈军
该数据产品是基于三十万景Landsat影像,结合现有产品自动稳定样本和目视解译样本生产获得,共包括9个一级类型,分别是:农田、森林、灌木、草地、水体、冰雪、荒地、不透水面、湿地;处理流程包括生成训练和测试样本、构建特征、检查分类和时空一致性,以及与其他产品准确性进行对比均在在GEE 平台上实施,以免于数据下载和管理;该数据集基于5463个独立参考样本,产品整体精度为79.31% ;CLCD数据集揭示了1985-2019年中国土地覆盖变化的趋势和模式:如不透水面(+148.71%)和地表水(+18.39%)的扩大,耕地(-4.85%)和草地(-3.29%)的减少,森林(+4.34%)的增加。总的来说,我们的结果反映了中国快速的城市化和一系列生态工程,揭示了在气候变化下人类活动对区域地表覆盖的影响
黄昕
中国西南地区(四川、重庆、云南、贵州)陆地气溶胶光学深度数据集是基于MODIS Terra和Aqua结合的大气矫正多角度实施(MAIAC)陆地气溶胶光学深度(AOD)的网格化2级产品MCD19A2,通过拼接、裁剪处理得到。空间分辨率为1km,时间分辨率为1天;时间范围为2000年2月28日至2022年9月6日。数据为TIF格式,其命名前七位均为“SW.AOD.”,后为年+天的日期标识,例如“2022.001”表示2022年第一天,如此类推。数据的坐标系统为GCS_Unknown_datum_based_upon_the_custom_spheroid。
Alexei Lyapustin
ALOS (Advanced Land Observing Satellite)是日本的对地观测卫星,于2006年发射。ALOS卫星再有三个传感器:全色遥感立体测绘仪,先进可见光与近红外辐射计-2,相控阵型L波段合成孔径雷达。ALOS-12.5米DEM数据来自于ALOS卫星相控阵型L波段合成孔径雷达(PALSAR)采集,该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。该数据的水平及垂直精度可达12.5米。
NASA
哨兵2号(Sentinel-2)包含两颗卫星,两颗相同的SENTINEL-2卫星同时运行,相位差180°,在平均海拔786 km的太阳同步轨道上运行。每个SENTINEL-2卫星在其轨道上的位置由双频全球导航卫星系统(GNSS)接收器测量。通过专用推进系统维持轨道精度。每颗卫星配备了最先进的多光谱成像仪(Multi Spectral Instrument ,MSI),可提供高分辨率的光学成像。分辨率为25米,覆盖波段13个(本数据经过筛选保留了常用的8个波段-2、3、4、5、6、8、8A)。可有效用于土地利用和变化检测制图、提供土地覆盖的支持、救灾支持、气候变化监测等。
顾松巍, 欧空局哥白尼数据中心
PALSAR拼接数据产品是通过JAXA对PALSAR和PALSAR-2的全球基本观测方案观察到的SAR反向散射图像的长路径组合而成的。以Gamma-0背向散射的形式提供的,其地理坐标为0.8秒(在赤道约为25米)的像素间距。时间间隔为年度,PALSAR-2的拼接数据可用于2015-2021年的时间段,PALSAR的拼接数据可用于2007-2010年。本数据经过数据筛选,数据裁剪等操作,获取了长江中上游地区HH和HV极化的ALOS PALSAR-2的数据。可用于P波段微波应用的研究。
ALOS-2/ALOS Science Project, ALOS-2/ALOS Science Project