简介:长江上游范围包括湖北、湖南、陕西、重庆、贵州、广西、甘肃、四川、云南、青海、西藏11个省、市地区,是我国重要河流的主要发源地。该区域生态环境安全直接关系到我国大部分区域的经济和社会发展。长江上游科学数据专题汇总了该区域资源、生态、环境、人文等站点实测、遥感反演产品数据,可为该区域的资源、环境等变化分析提供数据支撑。
发布时间:2022-11-02
数据集:70 个
MERRA-2 是 NASA 全球建模和同化办公室 (GMAO) 使用戈达德地球观测系统模型 (GEOS) 版本 5.12.4 制作的卫星时代全球大气再分析的最新版本数据集。随着气象同化的增强,MERRA-2 朝着 GMAO 的地球系统再分析目标迈出了重要的一步。MERRA-2 是第一个长期的全球再分析,用于同化基于空间的气溶胶观测并代表它们与气候系统中其他物理过程的相互作用。本数据集是MERRA-2中平均时间为每小时的二维数据收集,涵盖了1980年到2022年的时期,空间分辨率为0.5°*0.625°。该集合包含了中国西南地区的地表诊断数据,例如基流通量、地表温度、径流、表层土壤湿度、根区土壤湿度、表层水、根区层水和六层土壤温度等。数据字段使用从 00:30 UTC 开始的一小时中心时间进行时间标记,例如:00:30、01:30、...、23:30 UTC。
NASA
TanDEM-X 90m DEM是德国TanDEM-X任务在2010年至2015年期间获得的全球数字高程模型(DEM)数据,2015年完成数据的采集,2016年9月完成全球DEM的制作,其范围覆盖了南北两极之间的所有陆地,精度较高,绝对高程误差约1米。其在地球科学(地质学、冰川学、海洋学、气象学、水文学)、环境研究、土地利用、植被监测、城市和基础设施规划、制图,导航,后勤,危机管理,国防和安全等反面有广泛的应用。
German Aerospace Center
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
SMOS INRA-CESBIO(SMOS-IC)算法由INRA(国家农学研究所)和CESBIO(生物空间研究中心)设计,用于执行SM和L-VOD的全球检索。SMOS-IC基于Wigneron等人(2017)中定义的L-MEB模型的双参数反转,并将像素视为同质。因此,SMOS-IC的设计基础与2级SM算法相同,但使用了一些简化。具体而言,SMOS-IC没有考虑与处理具有异质土地覆盖区域(森林覆盖区域)、天线模式和复杂SMOS视角几何形状的检索相关的校正。因此,SMOS-IC产品的主要目标之一是尽可能独立于辅助数据,以便更加稳健,并受上述修正中潜在不确定性的影响较小。SMOS-IC算法和数据集在费尔南德斯-莫兰等人(2017)中进行了描述。可用的土壤湿度产品是第2版,以25公里的EASEv2网格提供,为netcdf格式。本产品在元数据的基础上进行数据的裁剪,裁剪后区域为中国长江上游,格式为TIFF格式。
美国国家航空航天局
这种增强的3级(L3)土壤水分产品提供了土壤湿度主动被动(SMAP)辐射计检索的全球陆地表面状况每日估计值的组合。本产品是 SMAP 2 级 (L2) 土壤湿度的每日复合物,该土壤水分源自 SMAP 1C 级 (L1C) 插值亮度温度。Backus-Gilbert 最优插值技术用于从 SMAP 天线温度中提取信息并将其转换为亮度温度,这些温度以全局圆柱投影的形式发布到 9 km 等积可扩展地球网格 2.0 版 (EASE-Grid 2.0)。截至2021年,这些数据也被发布到北半球EASE-Grid 2.0,一个方位角等积投影。
P. O’neill
该数据集包含从美国国家航空航天局(NASA)Aqua卫星上的先进微波扫描辐射计-地球观测系统(AMSR-E)仪器和JAXA GCOM-W1卫星上的先进微波扫描辐射计2(AMSR2)传感器生成的卫星检索的地球物理参数文件。地球物理参数包括日空气表面温度、部分开放水域覆盖估计值、植被光学深度、表面体积土壤湿度和大气总柱可降水蒸气。全球检索是在非沉淀,非雪和非冰覆盖条件下的土地上得出的。土壤水分的空间分辨率为25KM,覆盖全球,时间分辨率为1天。
Jinyang Du
此版本的亮点是改进了时间和空间覆盖范围,因为它包含了3个新的主动和被动传感器(所有传感器的上升和下降立交桥的观测值首次合并到此版本中)。验证表明,新版本是迄今为止最准确的ESA CCI SM产品。它提供了从1978年到2021年的全球数据。 算法更新包括以下内容: 包括新的风云 3C、3D 和 ASCAT-C 传感器 LPRM v7.1 改进了 LPRM 的模型参数化。这适用于所有无源传感器,但使用 LPRM v06.2 的 SMOS 和 SMAP 除外 所有无源传感器的日间观测值现在都包含在合并中 包括一个新的可选标志,用于贫瘠的地面 使用年内偏置校正方法协调传感器 产品的时间范围将延长至2021年底。 本数据在原始数据(主被动联合版本)的基础上对数据进行裁剪,裁剪范围为中国长江上游地区。
Wouter Dorigo
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。本数据集在元数据集的基础上进行裁剪,获取长江上游地区土壤水分数据。
毛克彪
基于微波数据同化的中国土壤水分数据集包含2002-2011年3层土壤水分数据(0-5cm,5-20cm,20-100cm)。数据采用Yang et al.(2007) 发展的自动标定参数的陆面同化系统(ITPLDAS),以中国区域高时空分辨率的地面气象要素数据集(ITP-forcing数据集)驱动陆面过程模型SiB2,同化AMSR-E 卫星观测亮温,输出三层土壤水分数据。土壤水分均方根误差:5%VWC(在青藏高原那曲和玛曲的评估精度)。
阳坤
ASTER GDEM数据由日本METI和美国NASA联合研制并免费面向公众分发。ASTER GDEM数据产品基于“先进星载热发射和反辐射计(ASTER)”数据计算生成,是目前唯一覆盖全球陆地表面的高分辨率高程影像数据。该产品空间分辨率为30m,目前有ASTER GDEM V1, ASTER GDEM V2, ASTER GDEM V3三个版本。2019年8月5日,NASA和METI共同发布了ASTER GDEM V3版本,在V2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。
NASA
中国长江上游1kmPM2.5数据集(2000-2021)是中国(中国大气污染物监测中心( CHAP ))系列长期、全覆盖、高分辨率、高质量的地面空气污染物数据集之一。它是利用人工智能的大数据(例如,地基测量、卫星遥感产品、大气再分析和模式模拟等),通过考虑空气污染的时空异质性而产生的。该数据为2000年至2021年中国长江流域每天1公里(即D1K)的地面PM2.5数据集。该数据集每天的交叉验证决定系数( CV-R2 )为0.92,均方根误差( RMSE )为10.76 µ g m - 3
伟晶
刘良云课题研发的1985-2020年地表覆盖精细产品(GLC_FCS30)以课题组2020年最新研发的全球30米地表覆盖精细分类产品(GLC_FCS30-2020)为基准数据,该产品提出了耦合变化检测和动态更新相结合的长时序地表覆盖动态监测方案,利用1984-2020年所有Landsat卫星数据(Landsat TM,ETM+和 OLI)生产了1985 年-2020年全球30米精细地表覆盖动态监测产品,沿用2020年基准数据的分类体系,共包含29个地表覆盖类型,更新周期为5年
刘良云
MOD13Q1.061数据每16天生成一次,空间分辨率为250米(m),为三级产品。MOD13Q1产品提供了归一化植被指数(NDVI)及增强植被指数(Enhanced vegetation Index, EVI)。算法从16天期间的所有获取中选择最佳可用像素值。使用的标准是低云层,低视角,和最高的NDVI/EVI值。除了植被层和两个质量层,HDF 文件具有 MODIS 反射波段 1(红色)、2(近红外)、3(蓝色)和 7(中红外),以及四个观测层。
Steve Running
SRTM由美国太空总署(NASA)和国家测绘局(NIMA)联合测量。2000年2月11日,美国发射的“奋进”号飞机上搭载SRTM系统,共计进行了222小时23分钟的数据采集工作,获取北纬60度至南纬60度之间总面积超过1.19亿平方公里的雷达影像数据,覆盖地球80%以上的陆地表面。 SRTM系统获取的雷达影像制成了SRTM地形产品数据。此数据产品2003年开始公开发布,经历多修订,目前的数据修订版本为V4.1版本。该版本由CIAT(国际热带农业中心)利用新的插值算法得到的SRTM地形数据,此方法更好的填补了SRTM 90的数据空洞。SRTM地形数据按精度可以分为SRTM1和SRTM3,分别对应的分辨率精度为30米和90米数据。
NASA
版本10r是数据集的当前版本。旧版本将不再可用,并被版本10r取代。OCO-2 Lite文件包含偏差校正的XCO2以及其他聚集为日常文件的选择字段。2021年初,OCO团队发现了自2020年1月28日以来处理的OCO-2二级产品的一个问题。辅助几何产品(AGAP)文件是OCO-二级地理定位处理中使用的静态文件。此AGAP文件包含约300 m的指向错误。因此,对2020年1月28日至12月31日期间的所有OCO-2 Level 2 10r版数据文件进行了更正和替换。替换过程于2021 6月底完成。轨道碳观测站是美国航天局的第一个任务,旨在收集大气二氧化碳的空间测量数据,其精度、分辨率和覆盖面都是控制其在大气中积聚的过程所需的。
NASA
Terra和Aqua组合的中分辨率成像光谱仪(MODIS)陆地覆盖气候模拟网格(CMG)(MCD12C1)Version 6数据产品提供了空间聚合和重投影版本的平铺MCD12Q1 Version 6数据产品。国际地圈-生物圈计划(IGBP)、马里兰大学(UMD)和叶面积指数(LAI)分类方案的地图以0.05 °( 5600米)空间分辨率逐年提供。MCD12C1产品的分类值从0-16,共17种土地类型。
NASA
中国长江上游土地覆盖遥感监测数据来源于中国多时相土地覆盖现状数据库,经过多年的积累而建立的覆盖全国陆地区域的数据库。 该数据集包括1970年代末期(1980年)、1980年代末期(1990年)、1995年、2000年、2005年、2010年、2015年、2018年、2020年数据,数据生产制作是以各期Landsat TM/ETM遥感影像为主要数据源,在前一年数据成果基础上,通过人工目视解译生成,数据可靠、质量较高。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级类型以及25个二级类型。
资源环境科学与数据中心
科佩尼库斯全球陆地服务( CGLS )被指定为陆地服务的一个组成部分,运营一个多用途服务组件,在全球范围内提供一系列关于陆地表面状态和演变的生物地球物理产品。 CGLS-LC100 ( Dynamic Land Cover Map at 100 m Resolution )是CGLS产品组合中的新产品,提供了100 m空间分辨率的全球土地覆盖图。CGLS土地覆盖产品提供了一个初步的土地覆盖方案。除这些离散的类别外,该产品还包括所有基本土地覆盖类别的连续字段层,为土地覆盖类型提供植被/地表覆盖的比例估计。这种连续的分类方案可能比标准分类方案更好地描述异质性土地覆盖的区域,因此,可以为应用定制(例如森林监测、作物监测、生物多样性与保护、非洲环境与安全监测、气候模拟等)。 这些一致的土地覆盖图(v3.0.1)提供了整个全球范围内2015-2019年的土地覆盖图,来源于PROBA-V100m时间序列、高质量土地覆盖训练场地数据库和若干辅助数据集,历年在Level1达到80 %的精度。计划从2020年起通过使用Sentinel时间序列提供年度更新。
Marcel Buchhorn
数据是基于10米分辨率的Sentinel-2数据的2017年中国长江上游及西南地区土地覆盖图(FROM-GLC10)。数据来源于清华大学地球系统科学系宫鹏教授研究组与国内外多家单位合作发表在《科学通报》(Science Bulletin)期刊中的《有限全球样本稳定地表覆盖分类:迁移2015年的30米分辨率样本完成2017年的10米分辨率全球地表覆盖制图》,通过ArcGIS裁剪出中国长江上游及西南地区的相关数据。数据经精度检验后的总体精度达到72.76%,精度较高。高分辨率的全球地表覆盖信息,能够更好地进行环境监测,进而维护人类健康和实现联合国可持续发展目标。
宫鹏