简介:长江上游范围包括湖北、湖南、陕西、重庆、贵州、广西、甘肃、四川、云南、青海、西藏11个省、市地区,是我国重要河流的主要发源地。该区域生态环境安全直接关系到我国大部分区域的经济和社会发展。长江上游科学数据专题汇总了该区域资源、生态、环境、人文等站点实测、遥感反演产品数据,可为该区域的资源、环境等变化分析提供数据支撑。
发布时间:2022-11-02
数据集:70 个
MCD12Q1 V6产品每年提供土地覆盖类型( 2001-2020年),来自六种不同的分类方案,一般采用的是第一个数据集Land cover type1(LC_Type1)IGBP的分类体系,因为其数据类型最为丰富,一共17种土地类型;其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。它是利用MODIS Terra和Aqua反射率数据的监督分类得出的。然后对监督分类进行附加的后处理,其中包括先验知识和辅助信息,以进一步细化特定类。数据空间分辨率为500m。
NASA
哨兵2号(Sentinel-2)包含两颗卫星,两颗相同的SENTINEL-2卫星同时运行,相位差180°,在平均海拔786 km的太阳同步轨道上运行。每个SENTINEL-2卫星在其轨道上的位置由双频全球导航卫星系统(GNSS)接收器测量。通过专用推进系统维持轨道精度。每颗卫星配备了最先进的多光谱成像仪(Multi Spectral Instrument ,MSI),可提供高分辨率的光学成像。分辨率为25米,覆盖波段13个(本数据经过筛选保留了常用的8个波段-2、3、4、5、6、8、8A)。可有效用于土地利用和变化检测制图、提供土地覆盖的支持、救灾支持、气候变化监测等。
欧空局哥白尼数据中心
PALSAR拼接数据产品是通过JAXA对PALSAR和PALSAR-2的全球基本观测方案观察到的SAR反向散射图像的长路径组合而成的。以Gamma-0背向散射的形式提供的,其地理坐标为0.8秒(在赤道约为25米)的像素间距。时间间隔为年度,PALSAR-2的拼接数据可用于2015-2021年的时间段,PALSAR的拼接数据可用于2007-2010年。本数据经过数据筛选,数据裁剪等操作,获取了长江中上游地区HH和HV极化的ALOS PALSAR-2的数据。可用于P波段微波应用的研究。
ALOS-2/ALOS Science Project, ALOS-2/ALOS Science Project
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长时间序列(1981-2015)NDVI产品,版本号3g.v1。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。该产品的时间分辨率是每月两次,空间分辨率8km,数据格式为geotiff。时间跨度1981年7月至2015年12月。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将中国长江上游部分裁切出来,以便单独开展长江上游地区的研究分析。
NOAA
GLOBMAP叶面积指数产品 (Version 3) 提供了全球1981年以来的高一致性长时间序列叶面积指数(Leaf Area Index, LAI)数据,产品持续更新。数据覆盖全球植被区域,空间分辨率为8km,采用经纬度坐标。产品基于AVHRR和MODIS数据定量融合反演得到,2000年前后分别为AVHRR和MODIS数据反演结果。算法首先基于MODIS地表反射率产品MOD09A1利用GLOBCARBON LAI算法(Deng et al., 2006)反演得到MODIS LAI序列,然后基于两个传感器的重叠观测构建AVHRR GIMMS NDVI与MODIS LAI像元级的关系,并基于该关系回溯反演了AVHRR LAI。
刘荣高
World Cover数据集是欧空局联合全球多家科研机构,共同制作的2020年全球10米土地覆盖产品;该数据产品分辨率为10米,是基于Sentinel-1和Sentinel-2数据进行制作,包括11中土地覆盖类别,分别为:林地、灌木、草地、耕地、建筑、荒漠、雪\冰、水体、湿地、红树林、苔藓\地衣,是在欧洲航天局WorldCover项目框架内生成,该项目是欧空局第5次地球观测网络计划(EOEP -5)的一部分。
欧空局
该数据产品是基于三十万景Landsat影像,结合现有产品自动稳定样本和目视解译样本生产获得,共包括9个一级类型,分别是:农田、森林、灌木、草地、水体、冰雪、荒地、不透水面、湿地;处理流程包括生成训练和测试样本、构建特征、检查分类和时空一致性,以及与其他产品准确性进行对比均在在GEE 平台上实施,以免于数据下载和管理;该数据集基于5463个独立参考样本,产品整体精度为79.31% ;CLCD数据集揭示了1985-2019年中国土地覆盖变化的趋势和模式:如不透水面(+148.71%)和地表水(+18.39%)的扩大,耕地(-4.85%)和草地(-3.29%)的减少,森林(+4.34%)的增加。总的来说,我们的结果反映了中国快速的城市化和一系列生态工程,揭示了在气候变化下人类活动对区域地表覆盖的影响
黄昕
本数据集是基于土壤剖面和样本汇编的机器学习方法对土壤属性进行预测,长江上游和西南地区范围的土壤属性(砂粒、粘粒、PH、体积密度、有机碳、质地等级)空间分布成图。水平空间分辨率为250m,垂直方向包括六个土层深度:0,10,30,60,100,200cm。格式为GeoTIFF,数据包含6个波段,其中第一到第六个波段依次为土壤粘粒含量在土层深度为0、10、30、60、100、200cm 的值,单位为%。
Tomislav Hengl
30米全球地表覆盖数据GlobeLand30是中国研制的30米空间分辨率全球地表覆盖数据,2014年发布GlobeLand30 2000和2010版,2020版已完成。GlobeLand30数据采用WGS-84坐标系,共包括10个一级类型,分别是耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78;V2020数据的总体精度为85.72%,Kappa系数0.82
陈军
长江上游及西南地区JRA55再分析3小时数据集(1958-2022),包括气温、大气加热、大气稳定性、亮度温度、冠层特征、云频率、云液态水/冰、蒸散发、 位势高度重力波、热通量、湿度、静水压力、地表温度、土地利用/土地覆盖分类、长波辐射、最高/最低温度、潜在温度、降水量、降水率径流、海平面压力、短波辐射、雪深、土壤水分/含水量、土壤温度、流函数、表面压力、表面粗糙度、地表风、总可降水量、对流层臭氧、高空气温、上层风等要素。数据为NETCDF格式,时间分辨率为3小时,水平空间分辨率为1.25°。可为长江上游和西南地区的陆面过程研究提供数据。 该数据集是对美国国家大气研究中心的JRA55气候再分析的陆地部分再处理生成的。 再分析使用物理定律将模型数据与来自世界各地的观察结果结合成一个全球完整的数据集,准确描述了过去的气候。
日本气象厅
SoilGrids基于约150000个用于训练的土壤剖面和一堆158个基于遥感的土壤协变量(主要来自MODIS土地产品,SRTM DEM衍生物、气候图像和全球地形和岩性图)用于拟合机器学习方法的集合随机森林和梯度,在R包中实现的增强和多项式逻辑回归,对七个标准深度(0、5、15、30、60、100和200 cm)的标准数值土壤特性(有机碳、体积密度、氮、阳离子交换量、pH值、土壤质地含量和粗碎屑)进行了预测。
Tomislav Hengl
卫星检索到的太阳诱导叶绿素荧光(SIF)显示出监测陆地生态系统光合活动的巨大潜力。然而,一些问题,包括网格化数据集的空间和时间分辨率低以及单个检索的高不确定性,限制了SIF的应用。此外,测量足迹的不一致也阻碍了涡流协方差(EC)磁通量塔的总初级生产(GPP)与卫星检索的SIF之间的直接比较。该数据集是通过训练具有中分辨率成像光谱仪表面反射率的神经网络(NN)和轨道碳观测站2(OCO-2)的表面反射因子,生成的全球空间连续的SIF数据集。晴空瞬时CSIF(CSIFclear-inst)对晴空 OCO-2 SIF显示出很高的精度,并且对生物群类型的偏差很小。连续的SIF数据集和派生的GPP-SIF关系可以更好地理解GPP在生物群落和气候中的空间和时间变化。本数据集为中国长江上游4天时间分辨率的日光诱导叶绿素荧光数据集。
Zhang Yao
该数据集提供了来自欧洲气象卫星 (EUMETSAT) MetOp-A 上的全球臭氧监测实验 2 (GOME-2) 仪器的叶绿素估计值的 2 级 (L2) 太阳诱导荧光 (SIF)数据,光谱分辨率约为 0.5 nm,并且波长在 734 和 758 nm 之间。 GOME-2 以约 40 公里 x 80 公里或创纪录的 40 公里 x 40 公里的分辨率在轨道基础上覆盖约 70 至 -57 度纬度之间的全球陆地。数据为 2007 年 2 月 1 日至 2018 年 1 月 31 日期间的数据。每个文件包含每日原始和偏差调整的太阳诱导荧光、质量控制信息和辅助数据。 SIF 测量可以提供有关植被功能状态的信息,包括光利用效率和全球初级生产力,可用于全球碳循环建模和农业应用。 GOME-2 SIF 产品由于信号电平低而具有固有的噪声,并且仅经过了有限的验证。该数据集中包含 3773 个 netCDF (*.nc) 格式的数据文件。数据变量被格式化为符合 CF 元数据约定的轨迹。本数据集提供的为中国长江上游的日平均SIF数据。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
该数据集提供了中国长江上游的二级(L2)太阳诱导荧光(SIF)的叶绿素估计值,该估计值来自欧洲航天局(ESA)环境卫星(Envisat)上的Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY(SCIAMACHY)仪器,光谱分辨率约0.5纳米,波长在734-758纳米之间。提供了从2003-01-01到2012-04-08期间的数据。每个文件都包含每天的原始和偏差调整的太阳诱导荧光,以及质量控制信息和辅助数据。本数据集为740 nm处反演的SIF。
Joanna Joiner, Yasuko Yoshida, Philipp Koehler, Christian Frankenberg, Nicholas C. Parazoo
叶面积指数(Leaf Area Index, LAI)是陆地生态系统中反映植被生长状况的基本变量,在碳循环、气候模式、陆地生态系统模拟和植被变化监测中发挥着重要作用。目前国际上已有多种中等分辨率的全球LAI产品,包括MODIS、GEOV、GLASS LAI等,但它们存在着时空不连续、产品的时间跨度、精度等局限性。梁顺林教授团队的马晗博士基于MODIS地表反射率数据,生成GLASS 第六版(V6)250米叶面积指数,该产品克服了在长期云或雪覆盖地区LAI质量低且时空不连续等问题,是目前空间分辨率最高的长时间序列的全球LAI产品。
梁顺林
MCD15A3H 版本 6.1 中分辨率成像光谱仪 (MODIS) 4 级、光合有效辐射 (FPAR) 的组合分数 (FPAR) 和叶面积指数 (LAI) 产品是一个 4 天的复合数据集,像素大小为 500 米。 该算法在 4 天内从位于 NASA 的 Terra 和 Aqua 卫星上的 MODIS 传感器的所有采集中选择可用的最佳像素。LAI 定义为阔叶树冠中每单位面积的单侧绿叶面积和针叶树冠中每单位面积的总针叶表面积的二分之一。
NASA
NASA全球陆地数据同化系统(GLDAS)的目标是通过生成摄取卫星和地基的最佳地表状态和通量场观测数据产品,使用先进的陆地表面建模和数据同化技术。GLDAS驱动多个离线的(不耦合的)对大气)的陆面模型,集成了大量的观测数据,并在全球范围内以高分辨率(2.5°到1公里)执行土地信息系统(LIS)。该产品的时间分辨率是三小时,空间分辨率0.25° x 0.25°,数据格式为tif。时间跨度2000-01-01至2022-07-01。该数据集为合理分配区域水资源提供科学依据。
NASA
版本10r是数据集的当前版本。OCO-2 SIF Lite文件包含偏差校正的太阳诱导叶绿素荧光以及聚合为每日文件的其他选择字段。轨道碳观测站是美国宇航局的第一个任务,旨在收集基于空间的大气二氧化碳测量值,其精度、分辨率和覆盖范围是表征控制其在大气中积累过程所需的精度、分辨率和覆盖范围。 OCO-2 项目使用携带单个仪器的 LEOStar-2 航天器。它包含三个高分辨率光谱仪,可同时测量 1.61 和 2.06 微米附近的近红外 CO2 和 0.76 微米的分子氧 (O2) A 波段中的反射阳光。该集合包括IMAP-DOAS预处理器的输出,该预处理器用于筛选官方XCO2产品以及从0.76微米O2 A波段检索太阳诱导荧光。IMAP-DOAS 预处理器与 ABO2 云屏幕一样,在操作 OCO-2 处理管道中实现。
NASA
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国长江上游年尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng
太阳诱导的叶绿素荧光(SIF)在测量陆地光合作用方面取得了重大进展。最近的几项研究评估了从轨道碳观测站-2(OCO-2)反演SIF在估计总初级生产力(GPP)方面的潜力。然而,OCO-2数据在空间和时间上的稀疏性使得将这些数据用于从生态系统尺度到全球的许多应用都具有挑战性。该数据集是利用离散的OCO-2 SIF测深、中分辨率成像光谱仪(MODIS)的遥感数据和气象再分析数据,开发的一个新的基于OCO-2的全球SIF数据集(GOSIF),具有高时空分辨率(即0.05°,8天、月、年)。与直接从OCO-2测深聚合的粗分辨率SIF数据相比,GOSIF具有更好的空间分辨率、全球连续覆盖和更长的记录。GOSIF可用于评估陆地光合作用和生态系统功能,并作为陆地生物圈和地球系统模型的基准。本数据集为中国长江上游月尺度时间分辨率的日光诱导叶绿素荧光数据。
Li Xing, Xiao Jingfeng